Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
740436111480872239 ~1992
740495511480991039 ~1992
740504511481009039 ~1992
740512311481024639 ~1992
740555631481111279 ~1992
740570991481141999 ~1992
740594391481188799 ~1992
740606991481213999 ~1992
740624511481249039 ~1992
74064863311072424710 ~1996
74067667355524801710 ~1996
740697895925583139 ~1994
740748111481496239 ~1992
740779015926232099 ~1994
740783511481567039 ~1992
740785311481570639 ~1992
740785911481571839 ~1992
740788311481576639 ~1992
740789511481579039 ~1992
740795391481590799 ~1992
74081923118531076910 ~1995
740831334444987999 ~1994
740846511481693039 ~1992
740847134445082799 ~1994
74084893118535828910 ~1995
Exponent Prime Factor Digits Year
740854911481709839 ~1992
740886591481773199 ~1992
740903631481807279 ~1992
740938431481876879 ~1992
74094887192646706310 ~1995
740951695927613539 ~1994
740958231481916479 ~1992
740965795927726339 ~1994
740989911481979839 ~1992
741008391482016799 ~1992
741031311482062639 ~1992
741033711482067439 ~1992
741044031482088079 ~1992
741052311482104639 ~1992
741058911482117839 ~1992
741090111482180239 ~1992
741097277410972719 ~1994
741130015929040099 ~1994
741134275929074179 ~1994
741140631482281279 ~1992
741144496522071512111 ~1999
741170031482340079 ~1992
741196315929570499 ~1994
741207711482415439 ~1992
74121533237188905710 ~1995
Exponent Prime Factor Digits Year
741237711482475439 ~1992
74127289163080035910 ~1995
741283374447700239 ~1994
741297174447783039 ~1994
741300111482600239 ~1992
741326214447957279 ~1994
741337431482674879 ~1992
741356414448138479 ~1994
741367431482734879 ~1992
74140303252077030310 ~1995
741403431482806879 ~1992
741426711482853439 ~1992
741443511482887039 ~1992
741461391482922799 ~1992
741483591482967199 ~1992
74150387177960928910 ~1995
741512511483025039 ~1992
741514911483029839 ~1992
74153393400428322310 ~1996
741537976881472361711 ~1999
741548031483096079 ~1992
741569631483139279 ~1992
741597591483195199 ~1992
741617215932937699 ~1994
741640191483280399 ~1992
Exponent Prime Factor Digits Year
741647631483295279 ~1992
741655791483311599 ~1992
741661431483322879 ~1992
74168293296673172110 ~1996
741685191483370399 ~1992
741757334450543999 ~1994
741758631483517279 ~1992
741764511483529039 ~1992
741766734450600399 ~1994
741768711483537439 ~1992
741774591483549199 ~1992
741803391483606799 ~1992
74187221281911439910 ~1996
741883791483767599 ~1992
741898315935186499 ~1994
74192939133547290310 ~1995
741931311483862639 ~1992
741935991483871999 ~1992
741939231483878479 ~1992
741940791483881599 ~1992
741973911483947839 ~1992
741986991483973999 ~1992
741999711483999439 ~1992
742026591484053199 ~1992
742048431484096879 ~1992
Home
4.724.182 digits
e-mail
25-04-13