Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
520563414164507299 ~1993
520581013123486079 ~1992
520581831041163679 ~1991
520583391041166799 ~1991
520594794164758339 ~1993
520596711041193439 ~1991
520606373123638239 ~1992
520610991041221999 ~1991
520630191041260399 ~1991
520630791041261599 ~1991
520647231041294479 ~1991
520659711041319439 ~1991
52067207291576359310 ~1995
520672191041344399 ~1991
520673031041346079 ~1991
52067363124961671310 ~1994
520678911041357839 ~1991
520693791041387599 ~1991
520699311041398639 ~1991
520699911041399839 ~1991
520702373124214239 ~1992
520704894165639139 ~1993
520715533124293199 ~1992
520722711041445439 ~1991
520727994165823939 ~1993
Exponent Prime Factor Digits Year
520729133124374799 ~1992
520729911041459839 ~1991
520742715207427119 ~1993
520762674166101379 ~1993
520764711041529439 ~1991
52079051718690903910 ~1996
520795373124772239 ~1992
520797591041595199 ~1991
520804497291262879 ~1993
520807791041615599 ~1991
520820031041640079 ~1991
520825311041650639 ~1991
520846911041693839 ~1991
520861431041722879 ~1991
520881711041763439 ~1991
520890018334240179 ~1993
520904031041808079 ~1991
520906311041812639 ~1991
520928631041857279 ~1991
520941231041882479 ~1991
520954191041908399 ~1991
520954791041909599 ~1991
520973279377518879 ~1994
520977231041954479 ~1991
520995591041991199 ~1991
Exponent Prime Factor Digits Year
521001831042003679 ~1991
521004591042009199 ~1991
521010177294142399 ~1993
521032311042064639 ~1991
521041791042083599 ~1991
521043231042086479 ~1991
521049711042099439 ~1991
521050074168400579 ~1993
521058111042116239 ~1991
521071191042142399 ~1991
52107667177166067910 ~1994
521080191042160399 ~1991
521090694168725539 ~1993
521107311042214639 ~1991
521109231042218479 ~1991
521122791042245599 ~1991
521158878338541939 ~1993
521161311042322639 ~1991
521165031042330079 ~1991
521174773127048639 ~1992
521174879381147679 ~1994
521183694169469539 ~1993
521194911042389839 ~1991
52120709166786268910 ~1994
521224818339596979 ~1993
Exponent Prime Factor Digits Year
521227431042454879 ~1991
521235231042470479 ~1991
521235591042471199 ~1991
521239431042478879 ~1991
521244613127467679 ~1992
521245374169962979 ~1993
521248431042496879 ~1991
521250111042500239 ~1991
521259594170076739 ~1993
521268013127608079 ~1992
521271711042543439 ~1991
521275494170203939 ~1993
521278614170228899 ~1993
521285511042571039 ~1991
521291511042583039 ~1991
521307591042615199 ~1991
521313111042626239 ~1991
521335191042670399 ~1991
521354274170834179 ~1993
521367831042735679 ~1991
521375115213751119 ~1993
521382831042765679 ~1991
521392911042785839 ~1991
521401911042803839 ~1991
521423333128539999 ~1992
Home
4.992.811 digits
e-mail
25-08-20