Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
549466311098932639 ~1991
549479991098959999 ~1991
549487911098975839 ~1991
549493431098986879 ~1991
549500391099000799 ~1991
549515511099031039 ~1991
549528711099057439 ~1991
549529791099059599 ~1991
549535995495359919 ~1993
549542991099085999 ~1991
54955297351713900910 ~1995
549553311099106639 ~1991
549559191099118399 ~1991
549560031099120079 ~1991
549563511099127039 ~1991
549564111099128239 ~1991
549572991099145999 ~1991
549575595495755919 ~1993
549581533297489199 ~1993
549586431099172879 ~1991
54960071142896184710 ~1994
549607911099215839 ~1991
54962393131909743310 ~1994
549627111099254239 ~1991
549627733297766399 ~1993
Exponent Prime Factor Digits Year
549664191099328399 ~1991
549670911099341839 ~1991
549676213298057279 ~1993
549676573298059439 ~1993
549685333298111999 ~1993
54968899494720091110 ~1995
549692694397541539 ~1993
549696831099393679 ~1991
549770631099541279 ~1991
549774231099548479 ~1991
549775791099551599 ~1991
549784914398279299 ~1993
549801111099602239 ~1991
549812031099624079 ~1991
549816231099632479 ~1991
549856311099712639 ~1991
549868813299212879 ~1993
54991543351945875310 ~1995
549933111099866239 ~1991
54993709120986159910 ~1994
549948111099896239 ~1991
549962991099925999 ~1991
549978013299868079 ~1993
549981591099963199 ~1991
549994014399952099 ~1993
Exponent Prime Factor Digits Year
549997613299985679 ~1993
550001631100003279 ~1991
550008711100017439 ~1991
550034631100069279 ~1991
550050733300304399 ~1993
55006631539064983910 ~1996
550070631100141279 ~1991
550073413300440479 ~1993
550094991100189999 ~1991
550103595501035919 ~1993
550105311100210639 ~1991
550106391100212799 ~1991
550108813300652879 ~1993
550120311100240639 ~1991
550127031100254079 ~1991
550150914401207299 ~1993
550152231100304479 ~1991
550165191100330399 ~1991
550170711100341439 ~1991
550179231100358479 ~1991
550180791100361599 ~1991
550184274401474179 ~1993
550201911100403839 ~1991
550246911100493839 ~1991
55025101165075303110 ~1994
Exponent Prime Factor Digits Year
550253577703549999 ~1994
550271274402170179 ~1993
550292031100584079 ~1991
550296591100593199 ~1991
550307991100615999 ~1991
550309311100618639 ~1991
550311013301866079 ~1993
550345431100690879 ~1991
550360311100720639 ~1991
550371791673130241711 ~1997
550377111100754239 ~1991
550377711100755439 ~1991
550394031100788079 ~1991
550395591100791199 ~1991
550395711100791439 ~1991
550399515503995119 ~1993
550422711100845439 ~1991
550422831100845679 ~1991
55042739132102573710 ~1994
550434591100869199 ~1991
550435573302613439 ~1993
550435911100871839 ~1991
550450431100900879 ~1991
550456191100912399 ~1991
550472031100944079 ~1991
Home
4.724.182 digits
e-mail
25-04-13