Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
502073511004147039 ~1991
502074013012444079 ~1992
502076838033229299 ~1993
502090311004180639 ~1991
502092231004184479 ~1991
502106511004213039 ~1991
502107771325564512911 ~1996
502110711004221439 ~1991
502125231004250479 ~1991
502134831004269679 ~1991
502139511004279039 ~1991
502155773012934639 ~1992
502164231004328479 ~1991
502164831004329679 ~1991
502165977030323599 ~1993
502166933013001599 ~1992
502168995021689919 ~1993
502178991004357999 ~1991
502184391004368799 ~1991
502195791004391599 ~1991
502210973013265839 ~1992
502211031004422079 ~1991
502213879039849679 ~1993
502214391004428799 ~1991
502223031004446079 ~1991
Exponent Prime Factor Digits Year
502228911004457839 ~1991
502244031004488079 ~1991
502267911004535839 ~1991
502272111004544239 ~1991
502283235022832319 ~1993
502303818036860979 ~1993
502307697032307679 ~1993
502366191004732399 ~1991
502375911004751839 ~1991
502382391004764799 ~1991
502389319043007599 ~1993
50239643130623071910 ~1994
502410973014465839 ~1992
502415391004830799 ~1991
502422533014535199 ~1992
502427391004854799 ~1991
50242771241165300910 ~1995
502431594019452739 ~1993
502439391004878799 ~1991
502445991004891999 ~1991
502448391004896799 ~1991
502450431004900879 ~1991
502483911004967839 ~1991
502507431005014879 ~1991
502510791005021599 ~1991
Exponent Prime Factor Digits Year
502518795025187919 ~1993
502519191005038399 ~1991
50253083452277747110 ~1995
502536111005072239 ~1991
502563831005127679 ~1991
502565933015395599 ~1992
502572831005145679 ~1991
502573311005146639 ~1991
502584231005168479 ~1991
502596591005193199 ~1991
502614831005229679 ~1991
502616631005233279 ~1991
502616991005233999 ~1991
502617378041877939 ~1993
502621431005242879 ~1991
502622031005244079 ~1991
502624311005248639 ~1991
502635373015812239 ~1992
502649391005298799 ~1991
50264989392066914310 ~1995
502655031005310079 ~1991
502698413016190479 ~1992
502702813016216879 ~1992
502715394021723139 ~1993
502720911005441839 ~1991
Exponent Prime Factor Digits Year
502728111005456239 ~1991
502732431005464879 ~1991
502733933016403599 ~1992
502740711005481439 ~1991
502747431005494879 ~1991
502748631005497279 ~1991
502753311005506639 ~1991
502756333016537999 ~1992
50276587120663808910 ~1994
502770773016624639 ~1992
502776111005552239 ~1991
502779111005558239 ~1991
502783311005566639 ~1991
502790511005581039 ~1991
50280677241347249710 ~1995
502814173016885039 ~1992
502820173016921039 ~1992
50283043120679303310 ~1994
502844991005689999 ~1991
502845231005690479 ~1991
502849191005698399 ~1991
502855311005710639 ~1991
502857711005715439 ~1991
502862511005725039 ~1991
502871031005742079 ~1991
Home
4.992.811 digits
e-mail
25-08-20