Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
559886511119773039 ~1991
559894431119788879 ~1991
559896231119792479 ~1991
559898631119797279 ~1991
559903911119807839 ~1991
559914831119829679 ~1991
55992361123183194310 ~1994
559936431119872879 ~1991
559952813359716879 ~1993
559980231119960479 ~1991
559992711119985439 ~1991
559996791119993599 ~1991
560005191120010399 ~1991
560016111120032239 ~1991
5600353713485651709712 ~1999
560040831120081679 ~1991
56004577268821969710 ~1995
560047311120094639 ~1991
560066031120132079 ~1991
560079231120158479 ~1991
560080311120160639 ~1991
560093991120187999 ~1991
56009869134423685710 ~1994
560104311120208639 ~1991
560112711120225439 ~1991
Exponent Prime Factor Digits Year
560131013360786079 ~1993
560131614481052899 ~1993
560133711120267439 ~1991
560145711120291439 ~1991
560153391120306799 ~1991
560159413360956479 ~1993
56016179504145611110 ~1996
56016691100830043910 ~1994
560176791120353599 ~1991
560194515601945119 ~1993
560205795602057919 ~1993
560207991120415999 ~1991
56021549134451717710 ~1994
560216391120432799 ~1991
560218911120437839 ~1991
560229711120459439 ~1991
560231391120462799 ~1991
560232831120465679 ~1991
560236914481895299 ~1993
560246511120493039 ~1991
560250591120501199 ~1991
560251573361509439 ~1993
560255031120510079 ~1991
560257791120515599 ~1991
560265831120531679 ~1991
Exponent Prime Factor Digits Year
56027549806796705710 ~1996
560328111120656239 ~1991
560333214482665699 ~1993
560333631120667279 ~1991
560362377845073199 ~1994
560380395603803919 ~1993
560398314483186499 ~1993
560405991120811999 ~1991
560435631120871279 ~1991
560454711120909439 ~1991
560455791120911599 ~1991
560477235604772319 ~1993
560481231120962479 ~1991
560483511120967039 ~1991
560487711120975439 ~1991
560489031120978079 ~1991
56049559100889206310 ~1994
56051269123312791910 ~1994
56052343134525623310 ~1994
560535831121071679 ~1991
560538831121077679 ~1991
560542791121085599 ~1991
560546391121092799 ~1991
560548911121097839 ~1991
560558031121116079 ~1991
Exponent Prime Factor Digits Year
560558937847825039 ~1994
560567511121135039 ~1991
560570631121141279 ~1991
560577413363464479 ~1993
560577414484619299
560591031121182079 ~1991
560599813363598879 ~1993
560601111121202239 ~1991
560611933363671599 ~1993
560614973363689839 ~1993
56061653583041191310 ~1996
560624031121248079 ~1991
560627631121255279 ~1991
560632074485056579 ~1993
560633031121266079 ~1991
560634591121269199 ~1991
560639115606391119 ~1993
56065621437311843910 ~1995
560672391121344799 ~1991
560672394485379139
560679231121358479 ~1991
560685111121370239 ~1991
560687511121375039 ~1991
560703173364219039 ~1993
560705511121411039 ~1991
Home
4.768.925 digits
e-mail
25-05-04