Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
550105311100210639 ~1991
550106391100212799 ~1991
550108813300652879 ~1993
550120311100240639 ~1991
550127031100254079 ~1991
550150914401207299 ~1993
550152231100304479 ~1991
550165191100330399 ~1991
550170711100341439 ~1991
550179231100358479 ~1991
550180791100361599 ~1991
550184274401474179 ~1993
550201911100403839 ~1991
550246911100493839 ~1991
55025101165075303110 ~1994
550253577703549999 ~1994
550271274402170179 ~1993
550292031100584079 ~1991
550296591100593199 ~1991
550307991100615999 ~1991
550309311100618639 ~1991
550311013301866079 ~1993
550345431100690879 ~1991
550360311100720639 ~1991
550371791673130241711 ~1997
Exponent Prime Factor Digits Year
550377111100754239 ~1991
550377711100755439 ~1991
550394031100788079 ~1991
550395591100791199 ~1991
550395711100791439 ~1991
550399515503995119 ~1993
550422711100845439 ~1991
550422831100845679 ~1991
55042739132102573710 ~1994
550434591100869199 ~1991
550435573302613439 ~1993
550435911100871839 ~1991
550450431100900879 ~1991
550456191100912399 ~1991
550472031100944079 ~1991
550472991100945999 ~1991
550478511100957039 ~1991
550481511100963039 ~1991
550493631100987279 ~1991
550504911101009839 ~1991
550509013303054079 ~1993
550518831101037679 ~1991
550522191101044399 ~1991
550528431101056879 ~1991
550530831101061679 ~1991
Exponent Prime Factor Digits Year
550536231101072479 ~1991
550536711101073439 ~1991
550545111101090239 ~1991
550552191101104399 ~1991
550556031101112079 ~1991
550557294404458339 ~1993
550561431101122879 ~1991
550563591101127199 ~1991
550577773303466639 ~1993
550591133303546799 ~1993
550616631101233279 ~1991
550622631101245279 ~1991
550638714405109699 ~1993
550640391101280799 ~1991
550646511101293039 ~1991
55065539132157293710 ~1994
550658631101317279 ~1991
550661391101322799 ~1991
550664214405313699 ~1993
550664413303986479 ~1993
550677173304063039 ~1993
550683111101366239 ~1991
550686831101373679 ~1991
55068701165206103110 ~1994
55070177165210531110 ~1994
Exponent Prime Factor Digits Year
550705013304230079 ~1993
550707675507076719 ~1993
550723137710123839 ~1994
550725413304352479 ~1993
550730991101461999 ~1991
550745991101491999 ~1991
55075213132180511310 ~1994
550757631101515279 ~1991
55076033132182479310 ~1994
550761111101522239 ~1991
550761591101523199 ~1991
550772511101545039 ~1991
550780911101561839 ~1991
550793511101587039 ~1991
550813191101626399 ~1991
550818111101636239 ~1991
550827613304965679 ~1993
550830894406647139 ~1993
550842591101685199 ~1991
550845111101690239 ~1991
550849791101699599 ~1991
550851111101702239 ~1991
550853994406831939 ~1993
550873977712235599 ~1994
55089059176284988910 ~1994
Home
4.768.925 digits
e-mail
25-05-04