Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
524643231049286479 ~1991
52464739178380112710 ~1994
52465849629590188110 ~1996
524659431049318879 ~1991
524663391049326799 ~1991
524693595246935919 ~1993
52472237199394500710 ~1994
524729511049459039 ~1991
524730591049461199 ~1991
524730894197847139 ~1993
524765031049530079 ~1991
524766591049533199 ~1991
524771511049543039 ~1991
524784111049568239 ~1991
524784231049568479 ~1991
524791311049582639 ~1991
524794333148765999 ~1992
524806431049612879 ~1991
524822337347512639 ~1993
524827674198621379 ~1993
524828213148969279 ~1992
524831631049663279 ~1991
524839875248398719 ~1993
524855991049711999 ~1991
524863319447539599 ~1994
Exponent Prime Factor Digits Year
524885631049771279 ~1991
524910111049820239 ~1991
524913711049827439 ~1991
524916174199329379 ~1993
524916831049833679 ~1991
524924574199396579 ~1993
524949318399188979 ~1993
524951173149707039 ~1992
524961231049922479 ~1991
524974431049948879 ~1991
524999391049998799 ~1991
525004733150028399 ~1992
525010791050021599 ~1991
52503307336021164910 ~1995
525037911050075839 ~1991
525037914200303299
525054294200434339 ~1993
525064311050128639 ~1991
525071511050143039 ~1991
525087591050175199 ~1991
525093231050186479 ~1991
525093711050187439 ~1991
525103914200831299 ~1993
525105438401686899 ~1993
525116994200935939 ~1993
Exponent Prime Factor Digits Year
525125391050250799 ~1991
525133791050267599 ~1991
525147111050294239 ~1991
525158933150953599 ~1992
525172191050344399 ~1991
525172431050344879 ~1991
525177111050354239 ~1991
52518233126043759310 ~1994
525183591050367199 ~1991
525186591050373199 ~1991
525221391050442799 ~1991
525227511050455039 ~1991
525230631050461279 ~1991
525246231050492479 ~1991
525253794202030339 ~1993
525260835252608319 ~1993
525273297353826079 ~1993
525277191050554399 ~1991
525277674202221379 ~1993
525277933151667599 ~1992
525287991050575999 ~1991
525291173151747039 ~1992
52529921535805194310 ~1995
525308991050617999 ~1991
525313311050626639 ~1991
Exponent Prime Factor Digits Year
525321013151926079 ~1992
52535803210143212110 ~1994
525363591050727199 ~1991
525369231050738479 ~1991
525385333152311999 ~1992
525389631050779279 ~1991
525402831050805679 ~1991
525412311050824639 ~1991
525421573152529439 ~1992
525432894203463139 ~1993
525434991050869999 ~1991
525448191050896399 ~1991
525459438407350899 ~1993
52546027252220929710 ~1995
525461814203694499 ~1993
525467213152803279 ~1992
525476391050952799 ~1991
525477831050955679 ~1991
525479533152877199 ~1992
525518391051036799 ~1991
525522111051044239 ~1991
525537294204298339 ~1993
525547213153283279 ~1992
525547911051095839 ~1991
525554391051108799 ~1991
Home
4.724.182 digits
e-mail
25-04-13