Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
402494834024948319 ~1992
402498372245940904711 ~1996
40250123805002478 ~1990
402503513220028099 ~1992
40250363805007278 ~1990
40250459805009198 ~1990
402510412415062479 ~1992
40252211805044238 ~1990
40253303805066078 ~1990
40254143805082878 ~1990
40255151805103038 ~1990
40255199805103998 ~1990
402559793220478339 ~1992
40256423805128478 ~1990
40256591805131838 ~1990
40260263805205278 ~1990
40261783136890062310 ~1993
40262819805256398 ~1990
40263791805275838 ~1990
40264043805280878 ~1990
402651674026516719 ~1992
40267057120801171110 ~1993
402684972416109839 ~1992
40268759805375198 ~1990
40270151805403038 ~1990
Exponent Prime Factor Digits Year
402728532416371199 ~1992
40272959805459198 ~1990
40273451805469038 ~1990
402736277249252879 ~1993
402749332416495999 ~1992
40275419805508398 ~1990
40275551805511038 ~1990
40275731805514638 ~1990
40276499805529998 ~1990
40276823805536478 ~1990
402770234027702319 ~1992
40277183805543678 ~1990
40278167193335201710 ~1994
40279163805583278 ~1990
40279331805586638 ~1990
40279619805592398 ~1990
40280593257795795310 ~1994
402810893222487139 ~1992
40281811330310850310 ~1994
40282559805651198 ~1990
40284479805689598 ~1990
402854572417127439 ~1992
40286171805723438 ~1990
402863812417182879 ~1992
402867674028676719 ~1992
Exponent Prime Factor Digits Year
402868098863097999 ~1993
40286819805736398 ~1990
40288439805768798 ~1990
40289003805780078 ~1990
402898036446368499 ~1993
40289999805799998 ~1990
40290083805801678 ~1990
40291403805828078 ~1990
40293023805860478 ~1990
402931012417586079 ~1992
402931098864483999 ~1993
40293131805862638 ~1990
402951473223611779 ~1992
402952732417716399 ~1992
40296491805929838 ~1990
40296671805933438 ~1990
40296731805934638 ~1990
40297151805943038 ~1990
40297319805946398 ~1990
402981194029811919 ~1992
40303871806077438 ~1990
40303979806079598 ~1990
40304279806085598 ~1990
40305059806101198 ~1990
40305371806107438 ~1990
Exponent Prime Factor Digits Year
403061873224494979 ~1992
403064899673557379 ~1993
40306811806136238 ~1990
403068172418409039 ~1992
40306919806138398 ~1990
40308311806166238 ~1990
403094335643320639 ~1992
40309931806198638 ~1990
40311263806225278 ~1990
40311371806227438 ~1990
40311983806239678 ~1990
403129073225032579 ~1992
40314383806287678 ~1990
403161535644261439 ~1992
40316183806323678 ~1990
40317071806341438 ~1990
40317503806350078 ~1990
403175093225400739 ~1992
40317779806355598 ~1990
40318079806361598 ~1990
403192612419155679 ~1992
40319771806395438 ~1990
40320803806416078 ~1990
40321811806436238 ~1990
40322819806456398 ~1990
Home
4.368.158 digits
e-mail
24-10-27