Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
28535078840357070157680712 ~2021
28541153311157082306622312 ~2021
28542025247957084050495912 ~2021
28542749719157085499438312 ~2021
28544871667157089743334312 ~2021
28545384967157090769934312 ~2021
28546302479957092604959912 ~2021
28547874932357095749864712 ~2021
28548849697157097699394312 ~2021
2855230132072969...37352914 2024
28553644015157107288030312 ~2021
28553701699157107403398312 ~2021
28556203481957112406963912 ~2021
28556416825157112833650312 ~2021
28557079724357114159448712 ~2021
28557684379157115368758312 ~2021
2856774338171371...82321714 2024
28573024496357146048992712 ~2021
28573441295957146882591912 ~2021
28573691341157147382682312 ~2021
28575296819957150593639912 ~2021
28578126041957156252083912 ~2021
28581593021957163186043912 ~2021
2858338041671897...96688915 2025
2858815102971069...85107915 2025
Exponent Prime Factor Dig. Year
28588558853957177117707912 ~2021
28588666613957177333227912 ~2021
28590699347957181398695912 ~2021
28591505069957183010139912 ~2021
28594611667157189223334312 ~2021
28595106236357190212472712 ~2021
28597250659157194501318312 ~2021
28599620825957199241651912 ~2021
28600244659157200489318312 ~2021
28600484474357200968948712 ~2021
28601060117957202120235912 ~2021
28603576763957207153527912 ~2021
28604634656357209269312712 ~2021
28605193697957210387395912 ~2021
28606953691157213907382312 ~2021
28606986853157213973706312 ~2021
28607716453157215432906312 ~2021
28608121249157216242498312 ~2021
28609309058357218618116712 ~2021
28613140157957226280315912 ~2021
28613176490357226352980712 ~2021
28614536093957229072187912 ~2021
28615182205157230364410312 ~2021
28615856915957231713831912 ~2021
2861612308336867...39992114 2025
Exponent Prime Factor Dig. Year
28618212110357236424220712 ~2021
2861868367211625...25752915 2025
2862248694612518...51256914 2024
28623873413957247746827912 ~2021
28624237313957248474627912 ~2021
28624300145957248600291912 ~2021
28625158088357250316176712 ~2021
28627522304357255044608712 ~2021
28627642919957255285839912 ~2021
28629096377957258192755912 ~2021
28629923213957259846427912 ~2021
28630498871957260997743912 ~2021
28631502086357263004172712 ~2021
28634222939957268445879912 ~2021
28634629253957269258507912 ~2021
28635344081957270688163912 ~2021
28637073977957274147955912 ~2021
28639099466357278198932712 ~2021
28643887085957287774171912 ~2021
28651766641157303533282312 ~2021
2865335840598252...20899314 2025
28659508952357319017904712 ~2021
28662303092357324606184712 ~2021
28662643051157325286102312 ~2021
28663317563957326635127912 ~2021
Exponent Prime Factor Dig. Year
28663946501957327893003912 ~2021
2866402042098318...61451915 2023
28666715225957333430451912 ~2021
28667879333957335758667912 ~2021
28668704233157337408466312 ~2021
28669221152357338442304712 ~2021
28670210209157340420418312 ~2021
28670266103957340532207912 ~2021
28671589724357343179448712 ~2021
28674042392357348084784712 ~2021
28683136651157366273302312 ~2021
28683147308357366294616712 ~2021
28684487923157368975846312 ~2021
28685716718357371433436712 ~2021
28686211865957372423731912 ~2021
28687262630357374525260712 ~2021
28690697293157381394586312 ~2021
28693555118357387110236712 ~2021
28694649521957389299043912 ~2021
28700131016357400262032712 ~2021
28700634935957401269871912 ~2021
2870174594473042...70138314 2024
28702448486357404896972712 ~2021
28705229077157410458154312 ~2021
28707011221157414022442312 ~2021
Home
5.307.017 digits
e-mail
26-01-11