Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
41314079527182628159054312 ~2022
41316692173182633384346312 ~2022
41321438498382642876996712 ~2022
41322234476382644468952712 ~2022
41325246896382650493792712 ~2022
4132780821837686...28603914 2025
41332766035182665532070312 ~2022
41334989816382669979632712 ~2022
4133548919812215...10181715 2025
41337439451982674878903912 ~2022
41339814581982679629163912 ~2022
41340993782382681987564712 ~2022
41341886311182683772622312 ~2022
41344493357982688986715912 ~2022
41351716058382703432116712 ~2022
41360768438382721536876712 ~2022
41368050283182736100566312 ~2022
41372292797982744585595912 ~2022
41376594269982753188539912 ~2022
41386980719982773961439912 ~2022
41392818551982785637103912 ~2022
41400150979182800301958312 ~2022
41403732509982807465019912 ~2022
41414770388382829540776712 ~2022
41414993989182829987978312 ~2022
Exponent Prime Factor Dig. Year
41417487215982834974431912 ~2022
41421858625182843717250312 ~2022
41422328455182844656910312 ~2022
41424463061982848926123912 ~2022
41425257794382850515588712 ~2022
41427775742382855551484712 ~2022
41430938504382861877008712 ~2022
41431428883182862857766312 ~2022
41434567111182869134222312 ~2022
41437506517182875013034312 ~2022
41437869599982875739199912 ~2022
41438266751982876533503912 ~2022
41444647826382889295652712 ~2022
41447916410382895832820712 ~2022
41452645130382905290260712 ~2022
41452942693182905885386312 ~2022
41454503618382909007236712 ~2022
4145927555872363...68459115 2025
41461448225982922896451912 ~2022
41466689773182933379546312 ~2022
41468408186382936816372712 ~2022
41469651049182939302098312 ~2022
4146997341717049...80907114 2025
41478264905982956529811912 ~2022
4147842690615434...23722316 2025
Exponent Prime Factor Dig. Year
41478824207982957648415912 ~2022
41479526222382959052444712 ~2022
41480462132382960924264712 ~2022
4148800537671194...48489715 2025
41489042228382978084456712 ~2022
41489823338382979646676712 ~2022
41492606810382985213620712 ~2022
41493182456382986364912712 ~2022
41494418945982988837891912 ~2022
41495199308382990398616712 ~2022
41502135865183004271730312 ~2022
41511872009983023744019912 ~2022
41514308201983028616403912 ~2022
41514440629183028881258312 ~2022
41515098389983030196779912 ~2022
4152025913579300...46396914 2025
41525043680383050087360712 ~2022
41527854355183055708710312 ~2022
41528643929983057287859912 ~2022
41530544195983061088391912 ~2022
4153386645413688...11240915 2025
41540540321983081080643912 ~2022
41550916838383101833676712 ~2022
41557608259183115216518312 ~2022
41559088433983118176867912 ~2022
Exponent Prime Factor Dig. Year
41563268839183126537678312 ~2022
41564169335983128338671912 ~2022
41569314776383138629552712 ~2022
41572860494383145720988712 ~2022
41574413909983148827819912 ~2022
41576325923983152651847912 ~2022
41577493742383154987484712 ~2022
41579253152383158506304712 ~2022
41580288026383160576052712 ~2022
41581507598383163015196712 ~2022
4159038744316987...90440914 2025
41594959856383189919712712 ~2022
41597364260383194728520712 ~2022
41602123370383204246740712 ~2022
41603031457183206062914312 ~2022
41606056178383212112356712 ~2022
41607634811983215269623912 ~2022
41608417418383216834836712 ~2022
41609693279983219386559912 ~2022
4161199735377240...39543914 2025
41622400615183244801230312 ~2022
41622838280383245676560712 ~2022
41624463301183248926602312 ~2022
41625142553983250285107912 ~2022
41625895916383251791832712 ~2022
Home
5.187.277 digits
e-mail
25-11-17