Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
19135789703938271579407912 ~2019
19137757675138275515350312 ~2019
19138917143938277834287912 ~2019
19140777314338281554628712 ~2019
19141199173138282398346312 ~2019
19143744254338287488508712 ~2019
19144214117938288428235912 ~2019
19146131450338292262900712 ~2019
1915027094772650...91616915 2025
19150608547138301217094312 ~2019
19156842709138313685418312 ~2019
19157555324338315110648712 ~2019
19157589272338315178544712 ~2019
19158299183938316598367912 ~2019
19160564921938321129843912 ~2019
19161503042338323006084712 ~2019
19161938696338323877392712 ~2019
19164979831138329959662312 ~2019
19165132583938330265167912 ~2019
19166231204338332462408712 ~2019
19166372045938332744091912 ~2019
1916721666291820...29755115 2025
19167479941138334959882312 ~2019
19168140050338336280100712 ~2019
19168354687138336709374312 ~2019
Exponent Prime Factor Dig. Year
19169612354338339224708712 ~2019
19169901115138339802230312 ~2019
19171825373938343650747912 ~2019
19171839416338343678832712 ~2019
1917319821735943...47363114 2023
19173931304338347862608712 ~2019
19176371363938352742727912 ~2019
19178996222338357992444712 ~2019
19179811757938359623515912 ~2019
19180016696338360033392712 ~2019
1918011026291496...00506314 2024
19184363882338368727764712 ~2019
19187052395938374104791912 ~2019
1918879336671473...05625715 2025
19188866894338377733788712 ~2019
19190980232338381960464712 ~2019
19191246524338382493048712 ~2019
19192158905938384317811912 ~2019
19192478669938384957339912 ~2019
19192496791138384993582312 ~2019
19194050828338388101656712 ~2019
1919464171273570...58562314 2024
19195473473938390946947912 ~2019
19196858432338393716864712 ~2019
1919745151791443...41460915 2025
Exponent Prime Factor Dig. Year
19199800028338399600056712 ~2019
1920206626331152...57980115 2025
19202957641138405915282312 ~2019
19207230785938414461571912 ~2019
19207828364338415656728712 ~2019
1920821286172458...46297714 2024
19209722743138419445486312 ~2019
19209879308338419758616712 ~2019
19210303705138420607410312 ~2019
19210314530338420629060712 ~2019
19211749952338423499904712 ~2019
19212784574338425569148712 ~2019
1921406063091963...64779915 2025
19214259527938428519055912 ~2019
19214608955938429217911912 ~2019
19214610956338429221912712 ~2019
19219571971138439143942312 ~2019
19221839197138443678394312 ~2019
19222309183138444618366312 ~2019
19224389306338448778612712 ~2019
19225265081938450530163912 ~2019
19226825804338453651608712 ~2019
19226923741138453847482312 ~2019
19229382371938458764743912 ~2019
19229923453138459846906312 ~2019
Exponent Prime Factor Dig. Year
19234536224338469072448712 ~2019
19234742102338469484204712 ~2019
19234836893938469673787912 ~2019
19236094313938472188627912 ~2019
19236349136338472698272712 ~2019
19237038827938474077655912 ~2019
19237293374338474586748712 ~2019
19238855503138477711006312 ~2019
19239915385138479830770312 ~2019
1924023873775541...56457714 2023
19240816603138481633206312 ~2019
19240958975938481917951912 ~2019
19241888969938483777939912 ~2019
19243109072338486218144712 ~2019
1924327647611535...27927915 2025
1924338483899698...58805714 2025
19243635943138487271886312 ~2019
19245491156338490982312712 ~2019
1924805126172425...58974314 2024
19248227594338496455188712 ~2019
19249337552338498675104712 ~2019
19249417664338498835328712 ~2019
19250532791938501065583912 ~2019
19250626777138501253554312 ~2019
19250861155138501722310312 ~2019
Home
5.307.017 digits
e-mail
26-01-11