Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13667602202327335204404712 ~2018
13667695668182006174008712 ~2019
13667789675927335579351912 ~2018
13668035672327336071344712 ~2018
13668556819127337113638312 ~2018
13670258497127340516994312 ~2018
13670548499927341096999912 ~2018
13670698315127341396630312 ~2018
13670795405927341590811912 ~2018
13670845271927341690543912 ~2018
1367252557218176...92115914 2026
13672732916327345465832712 ~2018
13673968475927347936951912 ~2018
1367505674894895...16106314 2024
13675076723927350153447912 ~2018
13675566359382053398155912 ~2019
13675581443927351162887912 ~2018
13676060305382056361831912 ~2019
13676340964182058045784712 ~2019
13676784961382060709767912 ~2019
13677207626327354415252712 ~2018
13678612063127357224126312 ~2018
13678737761927357475523912 ~2018
13678854365927357708731912 ~2018
13679021215127358042430312 ~2018
Exponent Prime Factor Dig. Year
13679035903127358071806312 ~2018
13680692964182084157784712 ~2019
13681802021927363604043912 ~2018
13682966275127365932550312 ~2018
13683135946182098815676712 ~2019
13684075631927368151263912 ~2018
13685067745127370135490312 ~2018
13686558440327373116880712 ~2018
13687574172182125445032712 ~2019
1368830951237473...93715914 2025
13690171721927380343443912 ~2018
13691323005782147938034312 ~2019
13691372294327382744588712 ~2018
13692523039127385046078312 ~2018
13694538986327389077972712 ~2018
13695067667927390135335912 ~2018
13696118719782176712318312 ~2019
13696666523927393333047912 ~2018
13696977584327393955168712 ~2018
13697249354327394498708712 ~2018
13697571965927395143931912 ~2018
13697772025127395544050312 ~2018
13697819816327395639632712 ~2018
13698137803382188826819912 ~2019
13698261425927396522851912 ~2018
Exponent Prime Factor Dig. Year
13700840933927401681867912 ~2018
13701331111127402662222312 ~2018
13701734888327403469776712 ~2018
1370221956312767...51746314 2024
13702391675927404783351912 ~2018
13702990463382217942779912 ~2019
13705166471927410332943912 ~2018
13705499569127410999138312 ~2018
13706297837927412595675912 ~2018
1370664515416469...12735314 2025
13706665584182239993504712 ~2019
13707542941127415085882312 ~2018
13707770960327415541920712 ~2018
13707775061927415550123912 ~2018
13708105579127416211158312 ~2018
1370851299133509...25772914 2023
13708927787927417855575912 ~2018
13710770791127421541582312 ~2018
13711556300327423112600712 ~2018
13712635394327425270788712 ~2018
13714207843382285247059912 ~2019
13714396484327428792968712 ~2018
13715610319127431220638312 ~2018
13718499470327436998940712 ~2018
13718632400327437264800712 ~2018
Exponent Prime Factor Dig. Year
13719211334327438422668712 ~2018
13720591082327441182164712 ~2018
13720946213382325677279912 ~2019
13721154873782326929242312 ~2019
13721405461127442810922312 ~2018
13722031007927444062015912 ~2018
13723497980327446995960712 ~2018
13723875693782343254162312 ~2019
1372466352312854...12804914 2024
13724862521927449725043912 ~2018
13726076606327452153212712 ~2018
13726253600327452507200712 ~2018
13726680607782360083646312 ~2019
1372669603012717...13959914 2024
1372705709778236...58620114 2023
13730853923927461707847912 ~2018
13731942119927463884239912 ~2018
13733516834327467033668712 ~2018
13734282307127468564614312 ~2018
13734699071927469398143912 ~2018
13734927503927469855007912 ~2018
13735085515127470171030312 ~2018
13735109773127470219546312 ~2018
13736555213927473110427912 ~2018
13737819245927475638491912 ~2018
Home
5.366.787 digits
e-mail
26-02-08