Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
29065560997158131121994312 ~2021
29067903719958135807439912 ~2021
2906942537572325...30056114 2024
29070176216358140352432712 ~2021
29070363251958140726503912 ~2021
29074381502358148763004712 ~2021
29074764619158149529238312 ~2021
29080155371958160310743912 ~2021
2908202974796979...39496114 2025
29082395729958164791459912 ~2021
29088443042358176886084712 ~2021
2908868556431029...89762315 2024
2909282647872618...83083114 2024
29093541284358187082568712 ~2021
29094026401158188052802312 ~2021
29094223007958188446015912 ~2021
2909482869612269...38295914 2025
2909527095112793...11305714 2024
29097314083158194628166312 ~2021
29097416072358194832144712 ~2021
29097700907958195401815912 ~2021
29101072940358202145880712 ~2021
29101972663158203945326312 ~2021
2910328634473317...43295914 2024
29105317868358210635736712 ~2021
Exponent Prime Factor Dig. Year
29108137513158216275026312 ~2021
29108472275958216944551912 ~2021
29110689374358221378748712 ~2021
29112981284358225962568712 ~2021
29113717661958227435323912 ~2021
29115850253958231700507912 ~2021
29116151485158232302970312 ~2021
29116615145958233230291912 ~2021
2911688697739957...46236714 2023
29117012609958234025219912 ~2021
29117984318358235968636712 ~2021
29125160954358250321908712 ~2021
29128071152358256142304712 ~2021
2913099009191450...65766315 2023
29132102425158264204850312 ~2021
29135133965958270267931912 ~2021
29138159612358276319224712 ~2021
29138330063958276660127912 ~2021
29139630284358279260568712 ~2021
29141045155158282090310312 ~2021
29141080166358282160332712 ~2021
29141196404358282392808712 ~2021
29142301805958284603611912 ~2021
29143923980358287847960712 ~2021
29144808055158289616110312 ~2021
Exponent Prime Factor Dig. Year
29145289783158290579566312 ~2021
29146755919158293511838312 ~2021
29149997561958299995123912 ~2021
29151741047958303482095912 ~2021
29158445255958316890511912 ~2021
29164468406358328936812712 ~2021
29164499765958328999531912 ~2021
29164877557158329755114312 ~2021
29165687609958331375219912 ~2021
29167189675158334379350312 ~2021
29173579357158347158714312 ~2021
29173918394358347836788712 ~2021
29174837137158349674274312 ~2021
29175472141158350944282312 ~2021
29177471357958354942715912 ~2021
29180183474358360366948712 ~2021
29180660966358361321932712 ~2021
29183844698358367689396712 ~2021
29185470542358370941084712 ~2021
29185752239958371504479912 ~2021
29185860518358371721036712 ~2021
29188026911958376053823912 ~2021
29191622185158383244370312 ~2021
2919648954072627...58663114 2024
29197148492358394296984712 ~2021
Exponent Prime Factor Dig. Year
29197813021158395626042312 ~2021
29197958755158395917510312 ~2021
29199100892358398201784712 ~2021
29200152131958400304263912 ~2021
2920016161196330...74599315 2025
29200323428358400646856712 ~2021
29201515208358403030416712 ~2021
29203127479158406254958312 ~2021
29205318524358410637048712 ~2021
29209031000358418062000712 ~2021
2921090754833330...60506314 2024
29211826141158423652282312 ~2021
29214640052358429280104712 ~2021
29216676329958433352659912 ~2021
29217276421158434552842312 ~2021
29221993801158443987602312 ~2021
29223593591958447187183912 ~2021
29225170403958450340807912 ~2021
29225613308358451226616712 ~2021
29226339458358452678916712 ~2021
29227098626358454197252712 ~2021
29227767719958455535439912 ~2021
2923381771274502...27755914 2023
29236813969158473627938312 ~2021
29239075058358478150116712 ~2021
Home
5.187.277 digits
e-mail
25-11-17