Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
14537415127787224490766312 ~2019
14537977394329075954788712 ~2018
14537988577129075977154312 ~2018
1453963178174177...15367916 2023
14540078792329080157584712 ~2018
14540210546329080421092712 ~2018
14540868649129081737298312 ~2018
14541066122329082132244712 ~2018
14541637699129083275398312 ~2018
14541671287787250027726312 ~2019
14541810188329083620376712 ~2018
14541985397929083970795912 ~2018
1454206570612792...15571314 2024
1454218488536136...21596714 2023
1454223228233490...47752114 2024
14542342729129084685458312 ~2018
14543040458329086080916712 ~2018
14544801893929089603787912 ~2018
14545870591129091741182312 ~2018
14546963941129093927882312 ~2018
14547290234329094580468712 ~2018
14547479010187284874060712 ~2019
14547998462329095996924712 ~2018
14548924085929097848171912 ~2018
14549985961129099971922312 ~2018
Exponent Prime Factor Dig. Year
14550251395129100502790312 ~2018
14550618089929101236179912 ~2018
14551025935129102051870312 ~2018
14551139671129102279342312 ~2018
14551640672329103281344712 ~2018
1455168955431121...05435916 2025
1455283051994802...71567114 2024
14553338672329106677344712 ~2018
1455507108612416...00292714 2024
14556014533129112029066312 ~2018
14557293200329114586400712 ~2018
14557773571129115547142312 ~2018
14559075242329118150484712 ~2018
14559883747387359302483912 ~2019
14560503812329121007624712 ~2018
14560552357387363314143912 ~2019
14561585120329123170240712 ~2018
14562055093129124110186312 ~2018
14563933322329127866644712 ~2018
14565581437129131162874312 ~2018
14565702476329131404952712 ~2018
14565950825929131901651912 ~2018
14566388768329132777536712 ~2018
14567270164187403620984712 ~2019
14568512279929137024559912 ~2018
Exponent Prime Factor Dig. Year
14568594540187411567240712 ~2019
14568893219929137786439912 ~2018
14569796540329139593080712 ~2018
14569860929929139721859912 ~2018
14570207519929140415039912 ~2018
14570358625129140717250312 ~2018
14571636818329143273636712 ~2018
14572292413129144584826312 ~2018
14572583189929145166379912 ~2018
14572709737129145419474312 ~2018
14572745063387436470379912 ~2019
14573627618329147255236712 ~2018
14574855919387449135515912 ~2019
14575446089929150892179912 ~2018
14576062603129152125206312 ~2018
14576193985787457163914312 ~2019
14576347003129152694006312 ~2018
14577759001129155518002312 ~2018
14579590837129159181674312 ~2018
14581484779129162969558312 ~2018
14582952587929165905175912 ~2018
14584386041929168772083912 ~2018
14584576411129169152822312 ~2018
14585288675929170577351912 ~2018
14586148235929172296471912 ~2018
Exponent Prime Factor Dig. Year
14587003915129174007830312 ~2018
14587247919787523487518312 ~2019
14587462037929174924075912 ~2018
14587504250329175008500712 ~2018
14587947649787527685898312 ~2019
14588102428187528614568712 ~2019
14588811089929177622179912 ~2018
14589834605929179669211912 ~2018
14590675688329181351376712 ~2018
14591381497129182762994312 ~2018
14591781979129183563958312 ~2018
14592700615387556203691912 ~2019
14593176137929186352275912 ~2018
14594592403129189184806312 ~2018
1459613461492802...46060914 2024
14596590109787579540658312 ~2019
14598011520187588069120712 ~2019
14598054434329196108868712 ~2018
14599166108329198332216712 ~2018
14599837610329199675220712 ~2018
14601851663929203703327912 ~2018
14602125943129204251886312 ~2018
14602759751929205519503912 ~2018
14603798237929207596475912 ~2018
14604689723929209379447912 ~2018
Home
5.247.179 digits
e-mail
25-12-14