Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12471787793924943575587912 ~2018
12472121135374832726811912 ~2019
12473040416324946080832712 ~2018
12473454626324946909252712 ~2018
12475488515924950977031912 ~2018
12477405058174864430348712 ~2019
12477802262324955604524712 ~2018
12477824539124955649078312 ~2018
12479225069924958450139912 ~2018
12482730398324965460796712 ~2018
12483131627924966263255912 ~2018
12483765805124967531610312 ~2018
12484629919124969259838312 ~2018
12485562293924971124587912 ~2018
12485711435924971422871912 ~2018
12485817889124971635778312 ~2018
12486471187124972942374312 ~2018
12486994933124973989866312 ~2018
12487240351124974480702312 ~2018
12487374218324974748436712 ~2018
12487874432324975748864712 ~2018
12489210854324978421708712 ~2018
1248935694076819...89622314 2025
12490720313924981440627912 ~2018
1249202382491146...71258315 2025
Exponent Prime Factor Dig. Year
12492172601924984345203912 ~2018
12492303491924984606983912 ~2018
12492448499924984896999912 ~2018
12492767509124985535018312 ~2018
12492889771124985779542312 ~2018
12493047611924986095223912 ~2018
12493538261924987076523912 ~2018
12494788532324989577064712 ~2018
12497315257124994630514312 ~2018
12497690501924995381003912 ~2018
12499590489774997542938312 ~2019
1250042073015075...16420714 2023
12501161309925002322619912 ~2018
12502196345925004392691912 ~2018
12502587055125005174110312 ~2018
12502931197125005862394312 ~2018
12503008652325006017304712 ~2018
12503352381775020114290312 ~2019
12503964395925007928791912 ~2018
12504455678325008911356712 ~2018
12505986451125011972902312 ~2018
12506685536325013371072712 ~2018
12506776489125013552978312 ~2018
12506911579125013823158312 ~2018
12507203243925014406487912 ~2018
Exponent Prime Factor Dig. Year
12507262633125014525266312 ~2018
12508216715925016433431912 ~2018
12508707233925017414467912 ~2018
1250897674691100...37272115 2024
12510267823125020535646312 ~2018
12510351488325020702976712 ~2018
12511832411925023664823912 ~2018
12512010781125024021562312 ~2018
12512406656325024813312712 ~2018
12512782757925025565515912 ~2018
12513625255125027250510312 ~2018
12513996305925027992611912 ~2018
12514097318325028194636712 ~2018
12516575816325033151632712 ~2018
12516925637925033851275912 ~2018
12516997583925033995167912 ~2018
12517042691925034085383912 ~2018
12517349015925034698031912 ~2018
12517719329925035438659912 ~2018
12518214350325036428700712 ~2018
12518533994325037067988712 ~2018
12519241411125038482822312 ~2018
12521209547925042419095912 ~2018
12522838094325045676188712 ~2018
12524076086325048152172712 ~2018
Exponent Prime Factor Dig. Year
12525681211125051362422312 ~2018
12526058335125052116670312 ~2018
12526367438325052734876712 ~2018
12526663824175159982944712 ~2019
12527128069125054256138312 ~2018
12528434327925056868655912 ~2018
12528578315925057156631912 ~2018
12528981053925057962107912 ~2018
12530001223125060002446312 ~2018
12530284795125060569590312 ~2018
12530386034325060772068712 ~2018
1253133608833809...70843314 2023
12531432305925062864611912 ~2018
12531835178325063670356712 ~2018
12531890281125063780562312 ~2018
12532019329125064038658312 ~2018
12532423115925064846231912 ~2018
12532713641925065427283912 ~2018
12532973820175197842920712 ~2019
12533375636325066751272712 ~2018
12534929005775209574034312 ~2019
12535292540325070585080712 ~2018
12535787137125071574274312 ~2018
12536003197125072006394312 ~2018
12536478383925072956767912 ~2018
Home
5.187.277 digits
e-mail
25-11-17