Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11064396158322128792316712 ~2017
11065223609922130447219912 ~2017
11065288949922130577899912 ~2017
11065359524322130719048712 ~2017
11065681091922131362183912 ~2017
11065708477122131416954312 ~2017
11065715297922131430595912 ~2017
11066364590322132729180712 ~2017
11067154373922134308747912 ~2017
11069397997122138795994312 ~2017
11069454599922138909199912 ~2017
11069601512322139203024712 ~2017
11070066319122140132638312 ~2017
11070740927366424445563912 ~2018
11070944737122141889474312 ~2017
11071352621922142705243912 ~2017
11072612375922145224751912 ~2017
11073085634322146171268712 ~2017
11073652945122147305890312 ~2017
11073663191922147326383912 ~2017
1107404080812834...46873714 2024
11074218212322148436424712 ~2017
11074311530322148623060712 ~2017
11074615773766447694642312 ~2018
11075362580322150725160712 ~2017
Exponent Prime Factor Dig. Year
11075529185922151058371912 ~2017
11076363011922152726023912 ~2017
11076424513122152849026312 ~2017
1107676935291089...43253715 2025
1107786583911604...35016915 2024
11078999690322157999380712 ~2017
11079139687122158279374312 ~2017
11079179460166475076760712 ~2018
11080076603922160153207912 ~2017
11080080875922160161751912 ~2017
11080454827122160909654312 ~2017
11081087690322162175380712 ~2017
11081534555922163069111912 ~2017
11081735885922163471771912 ~2017
11082864281922165728563912 ~2017
11083515099766501090598312 ~2018
11084431454322168862908712 ~2017
11085395204322170790408712 ~2017
11085793249122171586498312 ~2017
11085921959922171843919912 ~2017
11086144905766516869434312 ~2018
11087131669366522790015912 ~2018
11087980856322175961712712 ~2017
11088615806322177231612712 ~2017
11089042631922178085263912 ~2017
Exponent Prime Factor Dig. Year
11089637429922179274859912 ~2017
11090512121922181024243912 ~2017
11090878747122181757494312 ~2017
11090890585122181781170312 ~2017
11093130962322186261924712 ~2017
11094221605122188443210312 ~2017
11094755897922189511795912 ~2017
11094986545122189973090312 ~2017
11095039687122190079374312 ~2017
11095156430322190312860712 ~2017
11096089017766576534106312 ~2018
11096736623922193473247912 ~2017
11097656017122195312034312 ~2017
11097692426322195384852712 ~2017
11097973381122195946762312 ~2017
11098545111766591270670312 ~2018
11099453342322198906684712 ~2017
11100301399122200602798312 ~2017
11100500153922201000307912 ~2017
11100610397922201220795912 ~2017
11100750253122201500506312 ~2017
11101602161922203204323912 ~2017
11101608093766609648562312 ~2018
11101782559122203565118312 ~2017
11102008495122204016990312 ~2017
Exponent Prime Factor Dig. Year
11102196506322204393012712 ~2017
11102685439122205370878312 ~2017
11103628535922207257071912 ~2017
11104565093922209130187912 ~2017
11104806971922209613943912 ~2017
11105312737122210625474312 ~2017
11105467661922210935323912 ~2017
11105625554322211251108712 ~2017
11105722615122211445230312 ~2017
11105761067922211522135912 ~2017
11106355980166638135880712 ~2018
11106676289922213352579912 ~2017
11109500711922219001423912 ~2017
11109882110322219764220712 ~2017
11111130266322222260532712 ~2017
11113483549122226967098312 ~2017
11113665470322227330940712 ~2017
11116436251122232872502312 ~2017
11116998637766701991826312 ~2018
11118250169366709501015912 ~2018
11118495661366710973967912 ~2018
11119548464322239096928712 ~2017
11120025689922240051379912 ~2017
11120026004322240052008712 ~2017
11120187104322240374208712 ~2017
Home
5.187.277 digits
e-mail
25-11-17