Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10191579265120383158530312 ~2017
10192210127920384420255912 ~2017
10192895996320385791992712 ~2017
10193697571761162185430312 ~2018
10194692954320389385908712 ~2017
10194929353120389858706312 ~2017
10195193659120390387318312 ~2017
10195369195120390738390312 ~2017
10195801343920391602687912 ~2017
10196038931920392077863912 ~2017
10197204640181577637120912 ~2018
10197509213920395018427912 ~2017
10197661627120395323254312 ~2017
10198012430320396024860712 ~2017
10198482907120396965814312 ~2017
10198921109920397842219912 ~2017
10200442724320400885448712 ~2017
10201039664320402079328712 ~2017
10201414962161208489772712 ~2018
10201825250320403650500712 ~2017
10201928329120403856658312 ~2017
10202334593920404669187912 ~2017
10202647667920405295335912 ~2017
10204050763120408101526312 ~2017
10204659905920409319811912 ~2017
Exponent Prime Factor Dig. Year
10205513414320411026828712 ~2017
10205677810781645422485712 ~2018
10207057435120414114870312 ~2017
1020706675192470...53959914 2024
10208865192161253191152712 ~2018
10209036673361254220039912 ~2018
10209228899920418457799912 ~2017
10210112203120420224406312 ~2017
10210484156320420968312712 ~2017
1021053593337412...87575914 2024
10210730864320421461728712 ~2017
10210852030161265112180712 ~2018
10212555140320425110280712 ~2017
10212693853120425387706312 ~2017
10212955343361277732059912 ~2018
10213051444161278308664712 ~2018
10213575655361281453931912 ~2018
10213901950181711215600912 ~2018
10213968721120427937442312 ~2017
10214175056320428350112712 ~2017
10214255497120428510994312 ~2017
10214498723920428997447912 ~2017
10215158789361290952735912 ~2018
1021529561175618...86435114 2024
10215344042320430688084712 ~2017
Exponent Prime Factor Dig. Year
10215740743120431481486312 ~2017
10216037738320432075476712 ~2017
10216512314320433024628712 ~2017
10216709137120433418274312 ~2017
10216788295120433576590312 ~2017
10216796251120433592502312 ~2017
10216908253120433816506312 ~2017
10216991780320433983560712 ~2017
10218439601920436879203912 ~2017
10219404975761316429854312 ~2018
10219520879920439041759912 ~2017
10219684601920439369203912 ~2017
10220017391920440034783912 ~2017
10220352667120440705334312 ~2017
10220881442320441762884712 ~2017
10221257439761327544638312 ~2018
10221378575920442757151912 ~2017
10221800222320443600444712 ~2017
10222833545920445667091912 ~2017
10222838018320445676036712 ~2017
10224653006320449306012712 ~2017
10226589241120453178482312 ~2017
1022709864733109...88779314 2024
10227321343120454642686312 ~2017
10227991826320455983652712 ~2017
Exponent Prime Factor Dig. Year
10228183189120456366378312 ~2017
10228205845120456411690312 ~2017
10228314918161369889508712 ~2018
10228732592320457465184712 ~2017
10228885529920457771059912 ~2017
10229747935120459495870312 ~2017
10231725407920463450815912 ~2017
10231740485920463480971912 ~2017
10233025428161398152568712 ~2018
10233031907920466063815912 ~2017
10233285119920466570239912 ~2017
10233550527761401303166312 ~2018
10233638942320467277884712 ~2017
10233657164320467314328712 ~2017
10235386225181883089800912 ~2018
10236161485761416968914312 ~2018
10236869469761421216818312 ~2018
10237044470320474088940712 ~2017
10237274594981898196759312 ~2018
10238301056320476602112712 ~2017
10238303041120476606082312 ~2017
10239174510161435047060712 ~2018
10239727580320479455160712 ~2017
1023984532214730...38810314 2024
10240828309120481656618312 ~2017
Home
5.187.277 digits
e-mail
25-11-17