Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
626727142311163...61273715 2023
6267317652137603905912712 ~2017
6267336307337604017843912 ~2017
6267447014312534894028712 ~2015
6267962413112535924826312 ~2015
6268027160312536054320712 ~2015
6268250009912536500019912 ~2015
6268522909112537045818312 ~2015
626872005612745...84571914 2023
6269321327912538642655912 ~2015
6269438324312538876648712 ~2015
6269538589112539077178312 ~2015
6269815724312539631448712 ~2015
6270607178312541214356712 ~2015
6271386523787799411331912 ~2017
6271562986150172503888912 ~2017
6271920161912543840323912 ~2015
6272098651112544197302312 ~2015
6272102425150176819400912 ~2017
6272406825737634440954312 ~2017
6272925911912545851823912 ~2015
6272952754137637716524712 ~2017
6273167740150185341920912 ~2017
6273204964362732049643112 ~2017
6273238826312546477652712 ~2015
Exponent Prime Factor Dig. Year
6273242060312546484120712 ~2015
6273402960137640417760712 ~2017
6273482929112546965858312 ~2015
6273516187750188129501712 ~2017
6273631207112547262414312 ~2015
6273633990137641803940712 ~2017
6274494809912548989619912 ~2015
6274685285912549370571912 ~2015
6274698058750197584469712 ~2017
6275808875912551617751912 ~2015
6275986670312551973340712 ~2015
6275996857112551993714312 ~2015
6276198640750209589125712 ~2017
6276512279337659073675912 ~2017
6276591127737659546766312 ~2017
6276670723112553341446312 ~2015
6277024453337662146719912 ~2017
6277133557337662801343912 ~2017
6277161811112554323622312 ~2015
6277366461737664198770312 ~2017
6277730431112555460862312 ~2015
6277793695112555587390312 ~2015
6278101796312556203592712 ~2015
6278346667150226773336912 ~2017
6279164702987908305840712 ~2017
Exponent Prime Factor Dig. Year
6279401671112558803342312 ~2015
6279568035737677408214312 ~2017
6280093304312560186608712 ~2015
6280266989912560533979912 ~2015
6280441867150243534936912 ~2017
6280569863912561139727912 ~2015
6280858424312561716848712 ~2015
6281160761912562321523912 ~2015
6281461672750251693381712 ~2017
6281477906312562955812712 ~2015
6281898841337691393047912 ~2017
6282211003112564422006312 ~2015
6282399221912564798443912 ~2015
6282550339337695302035912 ~2017
6282714017912565428035912 ~2015
6282823388312565646776712 ~2015
6282953654312565907308712 ~2015
6282991861112565983722312 ~2015
6283973927912567947855912 ~2015
6284389466950275115735312 ~2017
6284607638312569215276712 ~2015
6284614463912569228927912 ~2015
6284710361912569420723912 ~2015
6284792927912569585855912 ~2015
6284797115912569594231912 ~2015
Exponent Prime Factor Dig. Year
6285170653112570341306312 ~2015
6285233767962852337679112 ~2017
6285629815737713778894312 ~2017
6285891304362858913043112 ~2017
6285900025112571800050312 ~2015
6286994005150295952040912 ~2017
6287347261112574694522312 ~2015
6287542930137725257580712 ~2017
6287590892988026272500712 ~2017
6287683485737726100914312 ~2017
6287697074312575394148712 ~2015
6287825015912575650031912 ~2015
6288406988312576813976712 ~2015
6288521599788039302395912 ~2017
6288853241912577706483912 ~2015
6290242058312580484116712 ~2015
6290808565112581617130312 ~2015
629083076412063...90624914 2024
6291029306312582058612712 ~2015
6291182353112582364706312 ~2015
6291248105912582496211912 ~2015
6291613763912583227527912 ~2015
6291655211912583310423912 ~2015
6291774053337750644319912 ~2017
6291804020312583608040712 ~2015
Home
5.307.017 digits
e-mail
26-01-11