Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7562205015175622050151112 ~2018
7563090683915126181367912 ~2016
7563635645915127271291912 ~2016
7564183571915128367143912 ~2016
7564320020315128640040712 ~2016
7564335091760514680733712 ~2017
7564400768315128801536712 ~2016
7564475558315128951116712 ~2016
7564787521115129575042312 ~2016
7564818073745388908442312 ~2017
7564946291345389677747912 ~2017
7564995791915129991583912 ~2016
7565190505115130381010312 ~2016
7565277187115130554374312 ~2016
7565352563915130705127912 ~2016
7565774719745394648318312 ~2017
7566201131915132402263912 ~2016
7566399617915132799235912 ~2016
7566612212315133224424712 ~2016
7566903017915133806035912 ~2016
7567275221915134550443912 ~2016
7567447705115134895410312 ~2016
7567836577115135673154312 ~2016
7568140775915136281551912 ~2016
7568428799915136857599912 ~2016
Exponent Prime Factor Dig. Year
7568590939115137181878312 ~2016
7569285419915138570839912 ~2016
7569414677915138829355912 ~2016
7569415766315138831532712 ~2016
7569935900315139871800712 ~2016
7569962357915139924715912 ~2016
7570162135115140324270312 ~2016
7570343385745422060314312 ~2017
7570359049115140718098312 ~2016
7571627759915143255519912 ~2016
7571785050145430710300712 ~2017
7571908396760575267173712 ~2017
7572216332960577730663312 ~2017
7572354649975723546499112 ~2018
7572472238315144944476712 ~2016
7572685021115145370042312 ~2016
7573084835345438509011912 ~2017
7573583239115147166478312 ~2016
7573605437915147210875912 ~2016
7574024683115148049366312 ~2016
7574029628315148059256712 ~2016
7574615732315149231464712 ~2016
7575021134315150042268712 ~2016
7575473065115150946130312 ~2016
7576417303115152834606312 ~2016
Exponent Prime Factor Dig. Year
7576990766960615926135312 ~2017
7577131892315154263784712 ~2016
7577496727760619973821712 ~2017
7577556799345465340795912 ~2017
7577720532145466323192712 ~2017
7579002734315158005468712 ~2016
7579021963975790219639112 ~2018
7579238917115158477834312 ~2016
7579431512315158863024712 ~2016
7579438214315158876428712 ~2016
7580307332315160614664712 ~2016
7580439349115160878698312 ~2016
7581451165115162902330312 ~2016
7581793261160654346088912 ~2017
7581808309115163616618312 ~2016
7582212412760657699301712 ~2017
7582821865745496931194312 ~2017
7583032132145498192792712 ~2017
7583038631915166077263912 ~2016
7583239280315166478560712 ~2016
7583613669745501682018312 ~2017
7584082835915168165671912 ~2016
7584918341915169836683912 ~2016
7585103516315170207032712 ~2016
7585240856315170481712712 ~2016
Exponent Prime Factor Dig. Year
7585791341915171582683912 ~2016
7586042677745516256066312 ~2017
7587103673915174207347912 ~2016
7587461144315174922288712 ~2016
7587493139915174986279912 ~2016
7587634136315175268272712 ~2016
7587917035975879170359112 ~2018
7587935201915175870403912 ~2016
7588135273115176270546312 ~2016
7589115101915178230203912 ~2016
7589964733115179929466312 ~2016
7590022999115180045998312 ~2016
7590274873115180549746312 ~2016
7590628028315181256056712 ~2016
7590685559915181371119912 ~2016
759077883713840...91572714 2023
7591288328315182576656712 ~2016
7591673543915183347087912 ~2016
7591801799915183603599912 ~2016
7592236303115184472606312 ~2016
7592497466315184994932712 ~2016
7592885750315185771500712 ~2016
7593171638315186343276712 ~2016
7593306695915186613391912 ~2016
7593823631345562941787912 ~2017
Home
5.247.179 digits
e-mail
25-12-14