Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5884388185111768776370312 ~2015
5884445268758844452687112 ~2017
5884585627111769171254312 ~2015
5884733182747077865461712 ~2017
5884746374311769492748712 ~2015
5885385473911770770947912 ~2015
5885835977911771671955912 ~2015
5886018104311772036208712 ~2015
5886385023735318310142312 ~2016
5886581698358865816983112 ~2017
5886828893911773657787912 ~2015
588690193012719...91706314 2023
5886986456311773972912712 ~2015
5887063615735322381694312 ~2016
5887273259911774546519912 ~2015
5887708787335326252723912 ~2016
5888329898311776659796712 ~2015
5888443426135330660556712 ~2016
5888619896311777239792712 ~2015
5888961121111777922242312 ~2015
5889395833958893958339112 ~2017
5890306078135341836468712 ~2016
5890468214311780936428712 ~2015
5891374298311782748596712 ~2015
5892319987111784639974312 ~2015
Exponent Prime Factor Dig. Year
5892336709111784673418312 ~2015
5892713801911785427603912 ~2015
5892840319782499764475912 ~2017
5892927313111785854626312 ~2015
5892967183111785934366312 ~2015
5893184107111786368214312 ~2015
5893432547911786865095912 ~2015
5893576632135361459792712 ~2016
5894012515735364075094312 ~2016
5894027765911788055531912 ~2015
5894140537958941405379112 ~2017
5894265613111788531226312 ~2015
5894603129911789206259912 ~2015
5894677153111789354306312 ~2015
5895157457911790314915912 ~2015
5895360977911790721955912 ~2015
5895671084311791342168712 ~2015
5895705707911791411415912 ~2015
5896243958947169951671312 ~2017
5896591453111793182906312 ~2015
5896601155111793202310312 ~2015
5897253347911794506695912 ~2015
5897446717111794893434312 ~2015
5897548148311795096296712 ~2015
5898240155911796480311912 ~2015
Exponent Prime Factor Dig. Year
5898357655111796715310312 ~2015
5898414413911796828827912 ~2015
5899057571382586805998312 ~2017
5899391911111798783822312 ~2015
5899537955911799075911912 ~2015
5899587917911799175835912 ~2015
5899662929911799325859912 ~2015
5899955131111799910262312 ~2015
5900376685111800753370312 ~2015
5900385339735402312038312 ~2016
5900882422135405294532712 ~2016
5900892773911801785547912 ~2015
5900912683111801825366312 ~2015
5901815867911803631735912 ~2015
5901818099911803636199912 ~2015
5901980502759019805027112 ~2017
5902095829111804191658312 ~2015
5902127461747217019693712 ~2017
5903581885111807163770312 ~2015
5903651981911807303963912 ~2015
5904064118311808128236712 ~2015
5904298961911808597923912 ~2015
5904412497735426474986312 ~2016
5904651695335427910171912 ~2016
5904945907111809891814312 ~2015
Exponent Prime Factor Dig. Year
5905016678311810033356712 ~2015
5905054913911810109827912 ~2015
5905877263735435263582312 ~2016
5905939663111811879326312 ~2015
5906282473111812564946312 ~2015
5906841241111813682482312 ~2015
5906983649335441901895912 ~2016
5907122090947256976727312 ~2017
5907184415911814368831912 ~2015
5907308219911814616439912 ~2015
5907406874311814813748712 ~2015
5907411421335444468527912 ~2016
5907432581911814865163912 ~2015
5907433963111814867926312 ~2015
590754758398979...27528114 2025
5907810388135446862328712 ~2016
5907832369111815664738312 ~2015
5908127921947265023375312 ~2017
5908620487111817240974312 ~2015
5908698812311817397624712 ~2015
5909054947111818109894312 ~2015
5909671427911819342855912 ~2015
5909896520311819793040712 ~2015
5909968999111819937998312 ~2015
5910022867335460137203912 ~2016
Home
5.307.017 digits
e-mail
26-01-11