Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5203744136310407488272712 ~2015
5204262571731225575430312 ~2016
5204327309910408654619912 ~2015
5204504665731227027994312 ~2016
5205460897110410921794312 ~2015
5205721051110411442102312 ~2015
5205728413110411456826312 ~2015
5205868213141646945704912 ~2016
5206670099941653360799312 ~2016
5206902469110413804938312 ~2015
5206914973141655319784912 ~2016
5206917301110413834602312 ~2015
5206922387910413844775912 ~2015
5207049437910414098875912 ~2015
5207081803110414163606312 ~2015
5207221817910414443635912 ~2015
5207258597910414517195912 ~2015
5207287099110414574198312 ~2015
5207342948310414685896712 ~2015
5207366297331244197783912 ~2016
5207483006310414966012712 ~2015
5207652205110415304410312 ~2015
5207665813141661326504912 ~2016
520773568091999...01465714 2023
5207813135910415626271912 ~2015
Exponent Prime Factor Dig. Year
5207904897783326478363312 ~2017
5207987072310415974144712 ~2015
5208021218310416042436712 ~2015
5208287927910416575855912 ~2015
5208417586383334681380912 ~2017
5208650809110417301618312 ~2015
5208857012310417714024712 ~2015
5209354801110418709602312 ~2015
5209362535731256175214312 ~2016
5209460212141675681696912 ~2016
5209517839110419035678312 ~2015
5209800851910419601703912 ~2015
5209801126131258806756712 ~2016
520984067992250...73716914 2025
5210042012941680336103312 ~2016
5210130893910420261787912 ~2015
5210164823910420329647912 ~2015
5210188645110420377290312 ~2015
5210206974183363311585712 ~2017
5210679011910421358023912 ~2015
5210781374310421562748712 ~2015
5210866624131265199744712 ~2016
5210907803331265446819912 ~2016
5210973632310421947264712 ~2015
5211232349331267394095912 ~2016
Exponent Prime Factor Dig. Year
5211244144352112441443112 ~2016
5211332995110422665990312 ~2015
5211496377731268978266312 ~2016
5211987043110423974086312 ~2015
5212109929110424219858312 ~2015
5212647070131275882420712 ~2016
5212998769110425997538312 ~2015
521336257873628...54775314 2024
5213790149910427580299912 ~2015
5214074089110428148178312 ~2015
5214338207941714705663312 ~2016
5214443180973002204532712 ~2017
5214692189910429384379912 ~2015
5214735758310429471516712 ~2015
5215060666131290363996712 ~2016
5215090424310430180848712 ~2015
5215275737910430551475912 ~2015
5215470193331292821159912 ~2016
5215546027110431092054312 ~2015
5215558799910431117599912 ~2015
5215884793331295308759912 ~2016
5216091694383457467108912 ~2017
5216362663741730901309712 ~2016
521641694931092...91834315 2023
5216664257910433328515912 ~2015
Exponent Prime Factor Dig. Year
5216945965141735567720912 ~2016
5217177653910434355307912 ~2015
5217238531110434477062312 ~2015
5217272660310434545320712 ~2015
5217277262941738218103312 ~2016
5217569551141740556408912 ~2016
5217594008310435188016712 ~2015
5218035145110436070290312 ~2015
5218405741731310434450312 ~2016
5218505635110437011270312 ~2015
5218648721910437297443912 ~2015
5218789177331312735063912 ~2016
5218901026141751208208912 ~2016
5219020483141752163864912 ~2016
5219103128310438206256712 ~2015
5219126180941753009447312 ~2016
5219206427910438412855912 ~2015
5219372389110438744778312 ~2015
5219497429110438994858312 ~2015
5219657549910439315099912 ~2015
5220138553110440277106312 ~2015
5220162529141761300232912 ~2016
5220212748783523403979312 ~2017
5220382717731322296306312 ~2016
5220400781941763206255312 ~2016
Home
5.307.017 digits
e-mail
26-01-11