Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5014318380130085910280712 ~2016
5014511496130087068976712 ~2016
501459865916870...62967114 2024
5014716335910029432671912 ~2015
5014926007110029852014312 ~2015
5014947839910029895679912 ~2015
5015585669330093514015912 ~2016
5015700091740125600733712 ~2016
5015781326310031562652712 ~2015
5016064958940128519671312 ~2016
5016180620310032361240712 ~2015
5016196099110032392198312 ~2015
5016646580310033293160712 ~2015
5016651616130099909696712 ~2016
501679962477354...49810314 2025
5017037768310034075536712 ~2015
5017052282310034104564712 ~2015
5017236475110034472950312 ~2015
5017400723910034801447912 ~2015
5017419557910034839115912 ~2015
5017539401910035078803912 ~2015
5017561339110035122678312 ~2015
5018215844310036431688712 ~2015
5018391001110036782002312 ~2015
5018561729910037123459912 ~2015
Exponent Prime Factor Dig. Year
5018658710310037317420712 ~2015
5018709253110037418506312 ~2015
5018757701910037515403912 ~2015
5018789975910037579951912 ~2015
501885823071937...77050314 2023
5018879664130113277984712 ~2016
5018891053140151128424912 ~2016
5019065822310038131644712 ~2015
5019887333910039774667912 ~2015
5019978293910039956587912 ~2015
5020594330130123565980712 ~2016
5020972510740167780085712 ~2016
5021137172940169097383312 ~2016
5021297371110042594742312 ~2015
5021610061110043220122312 ~2015
5021803397910043606795912 ~2015
5021872923730131237542312 ~2016
5022295211910044590423912 ~2015
5022534054750225340547112 ~2016
5022589081110045178162312 ~2015
5022709366130136256196712 ~2016
5023038320970322536492712 ~2017
5023082906310046165812712 ~2015
5023595621910047191243912 ~2015
5023608782310047217564712 ~2015
Exponent Prime Factor Dig. Year
5023867625910047735251912 ~2015
5024055772350240557723112 ~2016
5024424589770341944255912 ~2017
5024510894310049021788712 ~2015
5024739794310049479588712 ~2015
5024805731330148834387912 ~2016
5024938280310049876560712 ~2015
5025605677110051211354312 ~2015
5025883424310051766848712 ~2015
5025914813910051829627912 ~2015
5026025271180416404337712 ~2017
5026218760140209750080912 ~2016
5026468843110052937686312 ~2015
5026608553330159651319912 ~2016
5026877510310053755020712 ~2015
5026902493110053804986312 ~2015
5026996919910053993839912 ~2015
5027116345110054232690312 ~2015
5027541646140220333168912 ~2016
5027545258140220362064912 ~2016
5027990381910055980763912 ~2015
5028082610310056165220712 ~2015
5028466700310056933400712 ~2015
5028702601110057405202312 ~2015
5028731762310057463524712 ~2015
Exponent Prime Factor Dig. Year
5029157939910058315879912 ~2015
5029308917910058617835912 ~2015
5029396807110058793614312 ~2015
5029477679910058955359912 ~2015
5029833692310059667384712 ~2015
5029975592310059951184712 ~2015
5030218553910060437107912 ~2015
5030721275910061442551912 ~2015
5030759525910061519051912 ~2015
5031050680130186304080712 ~2016
5031414217110062828434312 ~2015
5031546040130189276240712 ~2016
5032041125910064082251912 ~2015
5032358276310064716552712 ~2015
503242547032697...20808115 2025
5033131931910066263863912 ~2015
5033574807730201448846312 ~2016
5033762774970472678848712 ~2017
5034023897910068047795912 ~2015
5034140803110068281606312 ~2015
5034212743110068425486312 ~2015
5034474613110068949226312 ~2015
5034500497330207002983912 ~2016
5034576029910069152059912 ~2015
5035334579910070669159912 ~2015
Home
5.307.017 digits
e-mail
26-01-11