Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7376380489744258282938312 ~2017
7376563909114753127818312 ~2016
7376917841914753835683912 ~2016
7376947820314753895640712 ~2016
7377215984314754431968712 ~2016
7377546415759020371325712 ~2017
7378286670144269720020712 ~2017
7378330663114756661326312 ~2016
7378655418773786554187112 ~2018
7378810988314757621976712 ~2016
7379499164314758998328712 ~2016
7380192599914760385199912 ~2016
7381462873344288777239912 ~2017
7381742315914763484631912 ~2016
7382718419914765436839912 ~2016
7383236869114766473738312 ~2016
7383763118314767526236712 ~2016
7383838547914767677095912 ~2016
7384275830314768551660712 ~2016
7384734680314769469360712 ~2016
7384828429744308970578312 ~2017
7385034290314770068580712 ~2016
7385323931914770647863912 ~2016
7385418739114770837478312 ~2016
7385649392314771298784712 ~2016
Exponent Prime Factor Dig. Year
7385827730314771655460712 ~2016
7386186415973861864159112 ~2018
7386204197344317225183912 ~2017
7386682712959093461703312 ~2017
7386769265914773538531912 ~2016
7387066720144322400320712 ~2017
7387459766314774919532712 ~2016
7387485822144324914932712 ~2017
7388528162314777056324712 ~2016
7388957804314777915608712 ~2016
7389112826314778225652712 ~2016
7389272891914778545783912 ~2016
7389390079114778780158312 ~2016
7389596737114779193474312 ~2016
7390037249914780074499912 ~2016
7390125968314780251936712 ~2016
7390543987114781087974312 ~2016
7390976363344345858179912 ~2017
7391325809914782651619912 ~2016
7391868757114783737514312 ~2016
7392066803914784133607912 ~2016
7392541015114785082030312 ~2016
7393009525159144076200912 ~2017
7393160189914786320379912 ~2016
7393355593114786711186312 ~2016
Exponent Prime Factor Dig. Year
7393693265914787386531912 ~2016
7393857032314787714064712 ~2016
739393455372469...40935914 2023
7394006881744364041290312 ~2017
7394843251344369059507912 ~2017
7395166171114790332342312 ~2016
7395303401914790606803912 ~2016
7395498577114790997154312 ~2016
7396005697744376034186312 ~2017
7396561397914793122795912 ~2016
7396832924314793665848712 ~2016
7397202947914794405895912 ~2016
7397424116314794848232712 ~2016
7397645957344385875743912 ~2017
7397919161914795838323912 ~2016
7398731180314797462360712 ~2016
7398823249114797646498312 ~2016
7399150399114798300798312 ~2016
7399350293914798700587912 ~2016
7399362224314798724448712 ~2016
7399601063914799202127912 ~2016
7399653269914799306539912 ~2016
7400025386314800050772712 ~2016
7400211032314800422064712 ~2016
7400348859744402093158312 ~2017
Exponent Prime Factor Dig. Year
7401302453914802604907912 ~2016
7401319839744407919038312 ~2017
7401529267114803058534312 ~2016
740311357571539...23745714 2024
7403687834314807375668712 ~2016
7404285283974042852839112 ~2018
7404314684314808629368712 ~2016
7404338552314808677104712 ~2016
7405041375174050413751112 ~2018
7405220101114810440202312 ~2016
7405761861744434571170312 ~2017
7406280547744437683286312 ~2017
7407482972314814965944712 ~2016
7407913297114815826594312 ~2016
7408515281914817030563912 ~2016
7408745816959269966535312 ~2017
7409651546314819303092712 ~2016
7409860678159278885424912 ~2017
7410139765114820279530312 ~2016
7410171973759281375789712 ~2017
7410337313914820674627912 ~2016
7410380971114820761942312 ~2016
7410420428314820840856712 ~2016
7410539859744463239158312 ~2017
7410632221114821264442312 ~2016
Home
5.187.277 digits
e-mail
25-11-17