Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
472492983599449859671911 ~2014
472495023239449900464711 ~2014
4725084318775601349099312 ~2017
472508783039450175660711 ~2014
472516303199450326063911 ~2014
472539544799450790895911 ~2014
4726236486175619783777712 ~2017
4726475641985076561554312 ~2017
4726491472128358948832712 ~2016
4726543356128359260136712 ~2016
472666907039453338140711 ~2014
472669200239453384004711 ~2014
4727019624775632313995312 ~2017
4727677552347276775523112 ~2016
4727910148785102382676712 ~2017
4728226196937825809575312 ~2016
472843797839456875956711 ~2014
472851333599457026671911 ~2014
472873977119457479542311 ~2014
472886070599457721411911 ~2014
472891675439457833508711 ~2014
472916744399458334887911 ~2014
472970852399459417047911 ~2014
472994326439459886528711 ~2014
473041676399460833527911 ~2014
Exponent Prime Factor Dig. Year
473055201839461104036711 ~2014
473058074639461161492711 ~2014
4730799007728384794046312 ~2016
473088301199461766023911 ~2014
473098759199461975183911 ~2014
473114760719462295214311 ~2014
473140225439462804508711 ~2014
473147377919462947558311 ~2014
473183701919463674038311 ~2014
473191146599463822931911 ~2014
4731915534128391493204712 ~2016
4731958642375711338276912 ~2017
473227243439464544868711 ~2014
473260666319465213326311 ~2014
4732978969328397873815912 ~2016
473306692799466133855911 ~2014
473323439639466468792711 ~2014
473330099039466601980711 ~2014
473361594719467231894311 ~2014
473379366719467587334311 ~2014
4733830702128402984212712 ~2016
473387169599467743391911 ~2014
473417008392053...23958315 2025
473417710919468354218311 ~2014
473422524599468450491911 ~2014
Exponent Prime Factor Dig. Year
4734339709137874717672912 ~2016
473436537119468730742311 ~2014
4734737467328408424803912 ~2016
473500614839470012296711 ~2014
4735123698128410742188712 ~2016
473523834119470476682311 ~2014
473537641199470752823911 ~2014
4735545496128413272976712 ~2016
473560664639471213292711 ~2014
4735764925737886119405712 ~2016
473585627039471712540711 ~2014
4736061004347360610043112 ~2016
473624924039472498480711 ~2014
473630068199472601363911 ~2014
473664028199473280563911 ~2014
473677232519473544650311 ~2014
473689597799473791955911 ~2014
473692004519473840090311 ~2014
473740518594064...49502314 2023
473741871771544...01970314 2023
4737422940747374229407112 ~2016
4737612635328425675811912 ~2016
473772448919475448978311 ~2014
4738069314175809109025712 ~2017
473812657199476253143911 ~2014
Exponent Prime Factor Dig. Year
4738338305328430029831912 ~2016
473850673199477013463911 ~2014
473858094239477161884711 ~2014
473880633471012...30919315 2025
4739459125947394591259112 ~2016
473951428919479028578311 ~2014
473982711119479654222311 ~2014
473985033599479700671911 ~2014
474065478239481309564711 ~2014
4740729312128444375872712 ~2016
474114568319482291366311 ~2014
474125530319482510606311 ~2014
474128575439482571508711 ~2014
4741427659328448565955912 ~2016
4741822000137934576000912 ~2016
474218694719484373894311 ~2014
4742235269328453411615912 ~2016
474228819119484576382311 ~2014
4742455932128454735592712 ~2016
474272606519485452130311 ~2014
474285369839485707396711 ~2014
4742993508128457961048712 ~2016
4743191167328459147003912 ~2016
474330696839486613936711 ~2014
474343997519486879950311 ~2014
Home
5.247.179 digits
e-mail
25-12-14