Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5389111175910778222351912 ~2015
5389278013110778556026312 ~2015
5389585211910779170423912 ~2015
5389657124975455199748712 ~2017
5389739651910779479303912 ~2015
538991111512845...68772914 2024
5390092424310780184848712 ~2015
5390439450786247031211312 ~2017
5390458004310780916008712 ~2015
5390538980310781077960712 ~2015
5390679002310781358004712 ~2015
5390833547332345001283912 ~2016
5390880008310781760016712 ~2015
5391537977910783075955912 ~2015
5391694871332350169227912 ~2016
5392290035910784580071912 ~2015
5392323932943138591463312 ~2016
5392692289110785384578312 ~2015
5392696460310785392920712 ~2015
5392728386310785456772712 ~2015
5393247697953932476979112 ~2017
5393375333910786750667912 ~2015
5393572373910787144747912 ~2015
5393613362310787226724712 ~2015
5393759150310787518300712 ~2015
Exponent Prime Factor Dig. Year
5393836993110787673986312 ~2015
5394075458310788150916712 ~2015
5394512029110789024058312 ~2015
5394732673110789465346312 ~2015
5395430937732372585626312 ~2016
5395957945143167663560912 ~2016
5395977643332375865859912 ~2016
5396069531910792139063912 ~2015
5396118461910792236923912 ~2015
5396131265910792262531912 ~2015
5396642515110793285030312 ~2015
5396680724310793361448712 ~2015
5396978872132381873232712 ~2016
5396979365332381876191912 ~2016
5397009667110794019334312 ~2015
5397046403332382278419912 ~2016
5397355885110794711770312 ~2015
5397495335910794990671912 ~2015
5397870421110795740842312 ~2015
5397963864132387783184712 ~2016
5398119667743184957341712 ~2016
5398799312310797598624712 ~2015
5399482996386391727940912 ~2017
5399829398310799658796712 ~2015
5400169631910800339263912 ~2015
Exponent Prime Factor Dig. Year
5400173297910800346595912 ~2015
5400667795110801335590312 ~2015
5401078759110802157518312 ~2015
540136587919160...30953714 2024
5401471717332408830303912 ~2016
5401605781110803211562312 ~2015
5401841653110803683306312 ~2015
5402051533110804103066312 ~2015
5402720258310805440516712 ~2015
5402780881110805561762312 ~2015
5402854934310805709868712 ~2015
5403316082310806632164712 ~2015
5403394249110806788498312 ~2015
5403455783375648380966312 ~2017
5403512000310807024000712 ~2015
5403653479110807306958312 ~2015
5403979301910807958603912 ~2015
5404120903110808241806312 ~2015
5404784723910809569447912 ~2015
540479947031480...54862314 2023
5405031896310810063792712 ~2015
5405332003110810664006312 ~2015
5405677999143245423992912 ~2016
5405718163110811436326312 ~2015
5406781242754067812427112 ~2017
Exponent Prime Factor Dig. Year
5406956493732441738962312 ~2016
5406962948310813925896712 ~2015
5406997557732441985346312 ~2016
5406998297910813996595912 ~2015
5407046196132442277176712 ~2016
5407771393954077713939112 ~2017
5408519467143268155736912 ~2016
5408552245332451313471912 ~2016
5408685290310817370580712 ~2015
5408755171110817510342312 ~2015
5408857937910817715875912 ~2015
5409012953910818025907912 ~2015
5409192825154091928251112 ~2017
5409359845143274878760912 ~2016
5409437687910818875375912 ~2015
5409791210310819582420712 ~2015
5409919615732459517694312 ~2016
5409953159910819906319912 ~2015
5410463137732462778826312 ~2016
5410477147110820954294312 ~2015
5410487275110820974550312 ~2015
5410608614310821217228712 ~2015
5410627951110821255902312 ~2015
5410903040310821806080712 ~2015
5411343727110822687454312 ~2015
Home
5.187.277 digits
e-mail
25-11-17