Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
439094233918781884678311 ~2014
439104618838782092376711 ~2014
439113340918782266818311 ~2014
439137685798782753715911 ~2014
439205590318784111806311 ~2014
439213403638784268072711 ~2014
439248239638784964792711 ~2014
439256342998785126859911 ~2014
439262602211215...77128715 2023
439302034918786040698311 ~2014
4393198831326359192987912 ~2015
439346521198786930423911 ~2014
439371731038787434620711 ~2014
4393774007326362644043912 ~2015
439390634638787812692711 ~2014
4394100758961517410624712 ~2016
4394432380370310918084912 ~2016
439477461598789549231911 ~2014
439482097318789641946311 ~2014
4394963021326369778127912 ~2015
439497109798789942195911 ~2014
4395113554135160908432912 ~2016
439514729638790294592711 ~2014
439531166998790623339911 ~2014
439534961998790699239911 ~2014
Exponent Prime Factor Dig. Year
439561065118791221302311 ~2014
439568646838791372936711 ~2014
439588234798791764695911 ~2014
439595646118791912922311 ~2014
439617729238792354584711 ~2014
4396270847361547791862312 ~2016
4396558405370344934484912 ~2016
439671275518793425510311 ~2014
439673172118793463442311 ~2014
4396756782126380540692712 ~2015
439680901198793618023911 ~2014
439681644838793632896711 ~2014
439689524518793790490311 ~2014
439703000398794060007911 ~2014
439710510118794210202311 ~2014
439731081838794621636711 ~2014
439744456438794889128711 ~2014
439759740838795194816711 ~2014
439762293838795245876711 ~2014
439763706718795274134311 ~2014
439764860638795297212711 ~2014
439826792038796535840711 ~2014
4398501059326391006355912 ~2015
4398624921770377998747312 ~2016
439864291918797285838311 ~2014
Exponent Prime Factor Dig. Year
439901873038798037460711 ~2014
439904842438798096848711 ~2014
439930664518798613290311 ~2014
4399321005726395926034312 ~2015
4399505499726397032998312 ~2015
4399537755170392604081712 ~2016
439972628398799452567911 ~2014
439984064518799681290311 ~2014
439985763718799715274311 ~2014
4399968450126399810700712 ~2015
440000780998800015619911 ~2014
440026575118800531502311 ~2014
4400392809726402356858312 ~2015
440055914398801118287911 ~2014
4401170587326407023523912 ~2015
440120311318802406226311 ~2014
440151600238803032004711 ~2014
440164394038803287880711 ~2014
4401726036170427616577712 ~2016
440197213918803944278311 ~2014
440204523238804090464711 ~2014
440225273038804505460711 ~2014
440237914918804758298311 ~2014
4402527904735220223237712 ~2016
440264881198805297623911 ~2014
Exponent Prime Factor Dig. Year
440272381918805447638311 ~2014
440279178838805583576711 ~2014
440319504118806390082311 ~2014
4403288800735226310405712 ~2016
440337932398806758647911 ~2014
440361810718807236214311 ~2014
440367137518807342750311 ~2014
440384329798807686595911 ~2014
440414805238808296104711 ~2014
440445994798808919895911 ~2014
440450850838809017016711 ~2014
440457745798809154915911 ~2014
440484807718809696154311 ~2014
440519166598810383331911 ~2014
440521567198810431343911 ~2014
440529629398810592587911 ~2014
440544321838810886436711 ~2014
4405473128961676623804712 ~2016
440553997798811079955911 ~2014
440564210398811284207911 ~2014
440623698598812473971911 ~2014
440646410518812928210311 ~2014
440659730518813194610311 ~2014
4406653175326439919051912 ~2015
440673037198813460743911 ~2014
Home
5.247.179 digits
e-mail
25-12-14