Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
3692163021112953...16888114 2024
36923312411973846624823912 ~2021
3692423131313552...23202315 2024
36925567825173851135650312 ~2021
36928953571173857907142312 ~2021
3692910551511772...64724914 2024
36929406095973858812191912 ~2021
36930770123973861540247912 ~2021
36931910413173863820826312 ~2021
3693410459713028...76962314 2024
36938608493973877216987912 ~2021
36943402310373886804620712 ~2021
36946351628373892703256712 ~2021
36947918288373895836576712 ~2021
3695240208913251...83840914 2024
36957450266373914900532712 ~2021
36958545758373917091516712 ~2021
36963270649173926541298312 ~2021
36963574241973927148483912 ~2021
36966892753173933785506312 ~2021
3696922321275693...74755914 2024
3697000515595101...11514314 2024
36971371328373942742656712 ~2021
36976680632373953361264712 ~2021
36986174786373972349572712 ~2021
Exponent Prime Factor Dig. Year
36986787307173973574614312 ~2021
36986792747973973585495912 ~2021
36987042203973974084407912 ~2021
3698844600737915...45562314 2024
36991540076373983080152712 ~2021
36992648971173985297942312 ~2021
36995546744373991093488712 ~2021
36999668287173999336574312 ~2021
37008957271174017914542312 ~2021
37020713675974041427351912 ~2021
37020887503174041775006312 ~2021
37023811543174047623086312 ~2021
37024248241174048496482312 ~2021
37026150631174052301262312 ~2021
37026400736374052801472712 ~2021
37028690210374057380420712 ~2021
37032336011974064672023912 ~2021
37032417727174064835454312 ~2021
37032589637974065179275912 ~2021
37032701083174065402166312 ~2021
37033404821974066809643912 ~2021
37036548865174073097730312 ~2021
37036555832374073111664712 ~2021
3703982578613778...30182314 2024
37042932014374085864028712 ~2021
Exponent Prime Factor Dig. Year
37043758286374087516572712 ~2021
37045627969174091255938312 ~2021
37045868747974091737495912 ~2021
37053863903974107727807912 ~2021
37056756557974113513115912 ~2021
3705841343295558...14935114 2024
37058683873174117367746312 ~2021
37061118451174122236902312 ~2021
37062470072374124940144712 ~2021
3706307806215559...09315114 2024
37063763513974127527027912 ~2021
3707062212012891...25367914 2024
37071043321174142086642312 ~2021
3707330867239268...68075114 2025
3707338787272076...20871314 2024
37073699225974147398451912 ~2021
37073852059174147704118312 ~2021
37074047831974148095663912 ~2021
37075284149974150568299912 ~2021
37081125557974162251115912 ~2021
37081567213174163134426312 ~2021
37084563455974169126911912 ~2021
37086603044374173206088712 ~2021
37086956147974173912295912 ~2021
37091754769174183509538312 ~2021
Exponent Prime Factor Dig. Year
37099414997974198829995912 ~2021
37103991902374207983804712 ~2021
37106502535174213005070312 ~2021
37108361617174216723234312 ~2021
3711047808076605...98364714 2024
37111412024374222824048712 ~2021
37112603893174225207786312 ~2021
37118452777174236905554312 ~2021
37123349384374246698768712 ~2021
37124553938374249107876712 ~2021
3712799298192116...99683115 2024
37128564644374257129288712 ~2021
37135169315974270338631912 ~2021
37141549985974283099971912 ~2021
37144848613174289697226312 ~2021
37145414279974290828559912 ~2021
37148356169974296712339912 ~2021
37150102400374300204800712 ~2021
37151719087174303438174312 ~2021
37152018794374304037588712 ~2021
37152498355174304996710312 ~2021
37155595723174311191446312 ~2021
37156526507974313053015912 ~2021
37157096647174314193294312 ~2021
37162951567174325903134312 ~2021
Home
4.768.925 digits
e-mail
25-05-04