Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
16474413761932948827523912 ~2019
16474562771932949125543912 ~2019
16475054981932950109963912 ~2019
16475456905132950913810312 ~2019
1647555417893295...35780114 2024
1647581717693690...47625714 2023
16475956139932951912279912 ~2019
16476208111132952416222312 ~2019
16477508957932955017915912 ~2019
16480770818332961541636712 ~2019
16480949342332961898684712 ~2019
16482548543932965097087912 ~2019
1648455037614978...13582314 2024
16485473495932970946991912 ~2019
16485552299932971104599912 ~2019
16485757153132971514306312 ~2019
1648694457735110...18963114 2023
1648749692573792...92911114 2024
16487932718332975865436712 ~2019
1648877697592097...13344915 2025
16488935348332977870696712 ~2019
16491266083132982532166312 ~2019
16491768197932983536395912 ~2019
16495916069932991832139912 ~2019
16496459771932992919543912 ~2019
Exponent Prime Factor Dig. Year
16497484916332994969832712 ~2019
16497660397132995320794312 ~2019
16498321157932996642315912 ~2019
16498742972332997485944712 ~2019
16499726669932999453339912 ~2019
16500224318333000448636712 ~2019
16500412417133000824834312 ~2019
16505104825133010209650312 ~2019
16505177894333010355788712 ~2019
16506793997933013587995912 ~2019
16507189892333014379784712 ~2019
16507555835933015111671912 ~2019
16508116289933016232579912 ~2019
16509216404333018432808712 ~2019
16510704925133021409850312 ~2019
16511474606333022949212712 ~2019
1651190867532873...09502314 2024
1651297998672774...37765714 2024
16513314355133026628710312 ~2019
16515294182333030588364712 ~2019
16515410417933030820835912 ~2019
1651542280872774...31861714 2024
16515675259133031350518312 ~2019
16516219021133032438042312 ~2019
16517591108333035182216712 ~2019
Exponent Prime Factor Dig. Year
16518473228333036946456712 ~2019
16519122085133038244170312 ~2019
16519423549133038847098312 ~2019
16519571269133039142538312 ~2019
16520768165933041536331912 ~2019
16520809703933041619407912 ~2019
16521510590333043021180712 ~2019
16523007635933046015271912 ~2019
1652332675317746...18532915 2023
16523639912333047279824712 ~2019
16527632269133055264538312 ~2019
16528512452333057024904712 ~2019
16530636179933061272359912 ~2019
16531227797933062455595912 ~2019
16531818227933063636455912 ~2019
16532004019133064008038312 ~2019
16534885697933069771395912 ~2019
16535521997933071043995912 ~2019
16536077879933072155759912 ~2019
16538883302333077766604712 ~2019
16539106523933078213047912 ~2019
16540394834333080789668712 ~2019
16540479740333080959480712 ~2019
16541659805933083319611912 ~2019
16541678738333083357476712 ~2019
Exponent Prime Factor Dig. Year
16543142125133086284250312 ~2019
16543236569933086473139912 ~2019
16543379954333086759908712 ~2019
16545251891933090503783912 ~2019
16545338300333090676600712 ~2019
16546689356333093378712712 ~2019
16546965338333093930676712 ~2019
16547302255133094604510312 ~2019
16548266561933096533123912 ~2019
16549903549133099807098312 ~2019
16551859406333103718812712 ~2019
16553950670333107901340712 ~2019
16556064643133112129286312 ~2019
16557527684333115055368712 ~2019
16557850493933115700987912 ~2019
16558978616333117957232712 ~2019
16559090807933118181615912 ~2019
16559527865933119055731912 ~2019
16559556452333119112904712 ~2019
16560844967933121689935912 ~2019
16560879242333121758484712 ~2019
16560908051933121816103912 ~2019
16562644249133125288498312 ~2019
16564397611133128795222312 ~2019
16565455439933130910879912 ~2019
Home
4.888.230 digits
e-mail
25-06-29