Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
15304868483930609736967912 ~2018
15306841759130613683518312 ~2018
15307126591130614253182312 ~2018
15307749920330615499840712 ~2018
15309130196330618260392712 ~2018
15310058312330620116624712 ~2018
1531205479971822...11643115 2024
15312792313130625584626312 ~2018
15312989089130625978178312 ~2018
15314364518330628729036712 ~2018
15314969456330629938912712 ~2018
15315171949130630343898312 ~2018
15315230935130630461870312 ~2018
15315678943130631357886312 ~2018
15316605257930633210515912 ~2018
15320016851930640033703912 ~2018
15320547440330641094880712 ~2018
15322802882330645605764712 ~2018
15322894532330645789064712 ~2018
15323865938330647731876712 ~2018
15324804769130649609538312 ~2018
15326554937930653109875912 ~2018
15326867993930653735987912 ~2018
15327408302330654816604712 ~2018
15330639079130661278158312 ~2018
Exponent Prime Factor Dig. Year
15331371197930662742395912 ~2018
15331397795930662795591912 ~2018
15332972909930665945819912 ~2018
15333987455930667974911912 ~2018
15334130828330668261656712 ~2018
15336203779130672407558312 ~2018
15338420336330676840672712 ~2018
15338823188330677646376712 ~2018
15339546722330679093444712 ~2018
15340117609130680235218312 ~2018
1534042494611285...04831915 2023
15340929941930681859883912 ~2018
15341499173930682998347912 ~2018
15341698787930683397575912 ~2018
15341964068330683928136712 ~2018
15342064196330684128392712 ~2018
15342208670330684417340712 ~2018
15343284019130686568038312 ~2018
15345037813130690075626312 ~2018
1534571307911611...33055115 2025
15345807721130691615442312 ~2018
1534916582631031...35273715 2023
15349294741130698589482312 ~2018
15349379447930698758895912 ~2018
15349740353930699480707912 ~2018
Exponent Prime Factor Dig. Year
15349927652330699855304712 ~2018
15350926753130701853506312 ~2018
15352406965130704813930312 ~2018
15352603903130705207806312 ~2018
15352630568330705261136712 ~2018
15352691120330705382240712 ~2018
15354338389130708676778312 ~2018
15354632671130709265342312 ~2018
15355179908330710359816712 ~2018
15355581241130711162482312 ~2018
15356232608330712465216712 ~2018
15356732083130713464166312 ~2018
15363589208330727178416712 ~2018
15363876641930727753283912 ~2018
15366273089930732546179912 ~2018
15367949084330735898168712 ~2018
15370505681930741011363912 ~2018
15370598864330741197728712 ~2018
15371652836330743305672712 ~2018
15372076549130744153098312 ~2018
15373547629130747095258312 ~2018
15374412740330748825480712 ~2018
15374955986330749911972712 ~2018
15376205399930752410799912 ~2018
15376913960330753827920712 ~2018
Exponent Prime Factor Dig. Year
15378418484330756836968712 ~2018
15380217775130760435550312 ~2018
15380736722330761473444712 ~2018
15385191269930770382539912 ~2018
1538522402595046...80495314 2023
15387447173930774894347912 ~2018
15388392119930776784239912 ~2018
15389345111930778690223912 ~2018
15393548705930787097411912 ~2018
15393900625130787801250312 ~2018
15394514953130789029906312 ~2018
15396506780330793013560712 ~2018
15397145600330794291200712 ~2018
15397656827930795313655912 ~2018
15398042743130796085486312 ~2018
15398672617130797345234312 ~2018
15401894731130803789462312 ~2018
15402000020330804000040712 ~2018
1540558817093450...50281714 2023
15406630835930813261671912 ~2018
15407699773130815399546312 ~2018
15409580773130819161546312 ~2018
15409655995130819311990312 ~2018
15409895197130819790394312 ~2018
1541002647193205...06155314 2024
Home
4.768.925 digits
e-mail
25-05-04