Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
20258322505140516645010312 ~2019
2025884886591705...45087915 2023
2026134803872431...64644114 2024
20261382427140522764854312 ~2019
20261664215940523328431912 ~2019
20263750475940527500951912 ~2019
20265122852340530245704712 ~2019
20266410719940532821439912 ~2019
20268023948340536047896712 ~2019
20270434393140540868786312 ~2019
20270769001140541538002312 ~2019
20270890034340541780068712 ~2019
20271094459140542188918312 ~2019
20271171907140542343814312 ~2019
20271761504340543523008712 ~2019
20271962168340543924336712 ~2019
20272455469140544910938312 ~2019
20272545716340545091432712 ~2019
2027424188593234...47648716 2025
20275836631140551673262312 ~2019
20278359146340556718292712 ~2019
20282050295940564100591912 ~2019
20283646657140567293314312 ~2019
20285404574340570809148712 ~2019
20285686789140571373578312 ~2019
Exponent Prime Factor Dig. Year
20289339866340578679732712 ~2019
20290986667140581973334312 ~2019
20295704333940591408667912 ~2019
20296653025140593306050312 ~2019
20297002496340594004992712 ~2019
20297014382340594028764712 ~2019
20298326984340596653968712 ~2019
20298761912340597523824712 ~2019
20299646894340599293788712 ~2019
20299744795140599489590312 ~2019
20301638095140603276190312 ~2019
2030203595994913...02295914 2024
20302204159140604408318312 ~2019
20306543257140613086514312 ~2019
20307235897140614471794312 ~2019
20308151191140616302382312 ~2019
20309548316340619096632712 ~2019
20310622843140621245686312 ~2019
20311062073140622124146312 ~2019
20312254568340624509136712 ~2019
20313021935940626043871912 ~2019
20315717873940631435747912 ~2019
20316164113140632328226312 ~2019
20320605692340641211384712 ~2019
20322438025140644876050312 ~2019
Exponent Prime Factor Dig. Year
2032600333139756...99024114 2025
20328310844340656621688712 ~2019
20328606266340657212532712 ~2019
20329714585140659429170312 ~2019
20331138475140662276950312 ~2019
20335943324340671886648712 ~2019
20336025314340672050628712 ~2019
20340814994340681629988712 ~2019
20341004887140682009774312 ~2019
20341413139140682826278312 ~2019
20344892969940689785939912 ~2019
2034604258214516...53226314 2024
20348273759940696547519912 ~2019
20350150112340700300224712 ~2019
20350372457940700744915912 ~2019
2035055582872442...99444114 2024
20351411867940702823735912 ~2019
20355178913940710357827912 ~2019
20356478594340712957188712 ~2019
20358951781140717903562312 ~2019
20361128432340722256864712 ~2019
20362097855940724195711912 ~2019
20362195645140724391290312 ~2019
20362583485140725166970312 ~2019
20362942985940725885971912 ~2019
Exponent Prime Factor Dig. Year
20363324435940726648871912 ~2019
20365893620340731787240712 ~2019
2036655501111405...57659115 2025
20367559129140735118258312 ~2019
20368006537140736013074312 ~2019
20370564446340741128892712 ~2019
20370698618340741397236712 ~2019
20371050917940742101835912 ~2019
20375328301140750656602312 ~2019
20378414144340756828288712 ~2019
20380668169140761336338312 ~2019
20385480788340770961576712 ~2019
20386408537140772817074312 ~2019
20388020081940776040163912 ~2019
20388780301140777560602312 ~2019
20388885560340777771120712 ~2019
20389274669940778549339912 ~2019
20389674389940779348779912 ~2019
20389803481140779606962312 ~2019
20391434803140782869606312 ~2019
20396085536340792171072712 ~2019
20396896171140793792342312 ~2019
20400648955140801297910312 ~2019
20400941071140801882142312 ~2019
20404315399140808630798312 ~2019
Home
4.724.182 digits
e-mail
25-04-13