Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
154403664713088073294311 ~2011
154405877633088117552711 ~2011
154414541393088290827911 ~2011
1544201927912353615423312 ~2012
1544244253112353954024912 ~2012
154430868593088617371911 ~2011
154441826939266509615911 ~2012
154443549179266612950311 ~2012
154446442739266786563911 ~2012
154448890019266933400711 ~2012
154449936113088998722311 ~2011
154450137419267008244711 ~2012
154451357579267081454311 ~2012
154453514579267210874311 ~2012
154470298313089405966311 ~2011
154477080113089541602311 ~2011
154482138833089642776711 ~2011
154487205713089744114311 ~2011
1544889551912359116415312 ~2012
154514640233090292804711 ~2011
154518974633090379492711 ~2011
154521433793090428675911 ~2011
154522097393090441947911 ~2011
154532656433090653128711 ~2011
154535408339272124499911 ~2012
Exponent Prime Factor Dig. Year
154555643633091112872711 ~2011
154557199313091143986311 ~2011
154562110913091242218311 ~2011
154565817713091316354311 ~2011
154567401971109...46144714 2023
1545747313112365978504912 ~2012
1545777698912366221591312 ~2012
154578673913091573478311 ~2011
154582635113091652702311 ~2011
1545894435115458944351112 ~2012
154614922793092298455911 ~2011
1546177204324738835268912 ~2013
154618870619277132236711 ~2012
154625662433092513248711 ~2011
154631288393092625767911 ~2011
154633721393092674427911 ~2011
154635984833092719696711 ~2011
154643964113092879282311 ~2011
154646670619278800236711 ~2012
154650586433093011728711 ~2011
1546515761912372126095312 ~2012
1546523502146395705063112 ~2013
154656839393093136787911 ~2011
154658862113093177242311 ~2011
1546601970715466019707112 ~2012
Exponent Prime Factor Dig. Year
1546836383912374691071312 ~2012
154688172113093763442311 ~2011
154689733433093794668711 ~2011
154698230513093964610311 ~2011
154703505593094070111911 ~2011
154704184793094083695911 ~2011
154707291593094145831911 ~2011
154709294993094185899911 ~2011
154717758833094355176711 ~2011
154718545019283112700711 ~2012
1547235562315472355623112 ~2012
154729597793094591955911 ~2011
154742227793094844555911 ~2011
154749038633094980772711 ~2011
154761694793095233895911 ~2011
154762851713095257034311 ~2011
154764023513095280470311 ~2011
154764879739285892783911 ~2012
154764912233095298244711 ~2011
154770539513095410790311 ~2011
154780876219286852572711 ~2012
154786970513095739410311 ~2011
1547878090946436342727112 ~2013
154790009633095800192711 ~2011
154800216593096004331911 ~2011
Exponent Prime Factor Dig. Year
154806499913096129998311 ~2011
154808907833096178156711 ~2011
154809488033096189760711 ~2011
154810657579288639454311 ~2012
154813247539288794851911 ~2012
154816176593096323531911 ~2011
154826049113096520982311 ~2011
154832537339289952239911 ~2012
154837602833096752056711 ~2011
154840189193096803783911 ~2011
154841725193096834503911 ~2011
154847099393096941987911 ~2011
154848819113096976382311 ~2011
154851304913097026098311 ~2011
154854601819291276108711 ~2012
1548581170112388649360912 ~2012
1548603376315486033763112 ~2012
154865424179291925450311 ~2012
154878134993097562699911 ~2011
154880548313097610966311 ~2011
154880872819292852368711 ~2012
154885461593097709231911 ~2011
1548953042949566497372912 ~2014
154903225819294193548711 ~2012
1549051296715490512967112 ~2012
Home
5.307.017 digits
e-mail
26-01-11