Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
449282766718985655334311 ~2014
449298633118985972662311 ~2014
4493085403726958512422312 ~2015
449372442118987448842311 ~2014
449396279518987925590311 ~2014
449407593238988151864711 ~2014
449413494838988269896711 ~2014
449417069638988341392711 ~2014
449418043438988360868711 ~2014
449424102838988482056711 ~2014
449448796318988975926311 ~2014
449454676318989093526311 ~2014
449456189518989123790311 ~2014
449461709038989234180711 ~2014
449515690798990313815911 ~2014
449552350438991047008711 ~2014
4495591588126973549528712 ~2015
4495662835726973977014312 ~2015
4495766686126974600116712 ~2015
449583496438991669928711 ~2014
449605333918992106678311 ~2014
4496257097935970056783312 ~2016
4496290090135970320720912 ~2016
4496441939326978651635912 ~2015
449662959118993259182311 ~2014
Exponent Prime Factor Dig. Year
4496712364735973698917712 ~2016
449699182918993983658311 ~2014
449733956398994679127911 ~2014
449743040038994860800711 ~2014
449751506398995030127911 ~2014
449769552238995391044711 ~2014
449792950438995859008711 ~2014
449809321318996186426311 ~2014
449817340198996346803911 ~2014
449915074438998301488711 ~2014
449965049998999300999911 ~2014
449965550998999311019911 ~2014
449980440118999608802311 ~2014
4499915992735999327941712 ~2016
4499932551726999595310312 ~2015
449995474198999909483911 ~2014
449998286518999965730311 ~2014
450030646799000612935911 ~2014
450035556719000711134311 ~2014
450101708519002034170311 ~2014
450102285839002045716711 ~2014
450111559799002231195911 ~2014
450114838799002296775911 ~2014
450115449839002308996711 ~2014
4501581421945015814219112 ~2016
Exponent Prime Factor Dig. Year
450166301999003326039911 ~2014
4501727817727010366906312 ~2015
450199872239003997444711 ~2014
4502006542345020065423112 ~2016
450208310999004166219911 ~2014
4502224780736017798245712 ~2016
450228171599004563431911 ~2014
450236248199004724963911 ~2014
450236930519004738610311 ~2014
4502703276127016219656712 ~2015
450323109599006462191911 ~2014
450377897639007557952711 ~2014
4503935500736031484005712 ~2016
450447272399008945447911 ~2014
450459850799009197015911 ~2014
4504801177327028807063912 ~2015
450484064999009681299911 ~2014
4504841300936038730407312 ~2016
4504852919327029117515912 ~2015
450500074199010001483911 ~2014
4505410864345054108643112 ~2016
4505658307327033949843912 ~2015
450592125719011842514311 ~2014
450613453799012269075911 ~2014
450638289839012765796711 ~2014
Exponent Prime Factor Dig. Year
450649411919012988238311 ~2014
450657374399013147487911 ~2014
450657388439013147768711 ~2014
450700668839014013376711 ~2014
4507163235727042979414312 ~2015
450737652599014753051911 ~2014
450742408199014848163911 ~2014
4507919235727047515414312 ~2015
450818214239016364284711 ~2014
450842685719016853714311 ~2014
450851559599017031191911 ~2014
450862166039017243320711 ~2014
4508978654963125701168712 ~2016
450919231799018384635911 ~2014
4509316362745093163627112 ~2016
4509381362936075050903312 ~2016
451031371199020627423911 ~2014
4510350861727062105170312 ~2015
4510404133727062424802312 ~2015
451054005839021080116711 ~2014
451058815199021176303911 ~2014
451062161399021243227911 ~2014
451092313199021846263911 ~2014
451093021319021860426311 ~2014
4511154394736089235157712 ~2016
Home
4.768.925 digits
e-mail
25-05-04