Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5005044593330030267559912 ~2016
5005121948310010243896712 ~2015
5005434458310010868916712 ~2015
5005505516310011011032712 ~2015
5005574029110011148058312 ~2015
5005605971910011211943912 ~2015
5005640207910011280415912 ~2015
5005720970310011441940712 ~2015
5005773509910011547019912 ~2015
5005888947150058889471112 ~2016
5005891208940047129671312 ~2016
5006213149110012426298312 ~2015
5006446411110012892822312 ~2015
5006502392310013004784712 ~2015
5007126995910014253991912 ~2015
5007183758310014367516712 ~2015
5007194459940057555679312 ~2016
5007316279110014632558312 ~2015
5007377156310014754312712 ~2015
5008036145910016072291912 ~2015
5008080320310016160640712 ~2015
5008105736310016211472712 ~2015
5008141187910016282375912 ~2015
5008160004750081600047112 ~2016
5008179307110016358614312 ~2015
Exponent Prime Factor Dig. Year
5008366928310016733856712 ~2015
5008930181910017860363912 ~2015
5009515651110019031302312 ~2015
5009554817910019109635912 ~2015
5009622992310019245984712 ~2015
5009659933110019319866312 ~2015
5009950241910019900483912 ~2015
5010170983110020341966312 ~2015
5010650216310021300432712 ~2015
5010880147110021760294312 ~2015
5010890672310021781344712 ~2015
5010926815110021853630312 ~2015
5011000328310022000656712 ~2015
5011107404310022214808712 ~2015
5011424882310022849764712 ~2015
5011538609910023077219912 ~2015
5011834423110023668846312 ~2015
5012506669770175093375912 ~2017
5012639857110025279714312 ~2015
501336912492647...97947314 2024
5013488558310026977116712 ~2015
5013599546310027199092712 ~2015
5013681713940109453711312 ~2016
5013795104940110360839312 ~2016
5013935285910027870571912 ~2015
Exponent Prime Factor Dig. Year
5013956051910027912103912 ~2015
501402523211107...12476915 2025
5014135543730084813262312 ~2016
5014511496130087068976712 ~2016
501459865916870...62967114 2024
5014716335910029432671912 ~2015
5015585669330093514015912 ~2016
5015700091740125600733712 ~2016
5016064958940128519671312 ~2016
5016180620310032361240712 ~2015
5016196099110032392198312 ~2015
5016651616130099909696712 ~2016
5017052282310034104564712 ~2015
5017236475110034472950312 ~2015
5017400723910034801447912 ~2015
5017419557910034839115912 ~2015
5017539401910035078803912 ~2015
5017561339110035122678312 ~2015
5018215844310036431688712 ~2015
5018391001110036782002312 ~2015
5018658710310037317420712 ~2015
5018709253110037418506312 ~2015
5018757701910037515403912 ~2015
5018789975910037579951912 ~2015
501885823071937...77050314 2023
Exponent Prime Factor Dig. Year
5018879664130113277984712 ~2016
5018891053140151128424912 ~2016
5019065822310038131644712 ~2015
5019887333910039774667912 ~2015
5019978293910039956587912 ~2015
5020594330130123565980712 ~2016
5020972510740167780085712 ~2016
5021137172940169097383312 ~2016
5021297371110042594742312 ~2015
5021610061110043220122312 ~2015
5021803397910043606795912 ~2015
5022295211910044590423912 ~2015
5022589081110045178162312 ~2015
5023038320970322536492712 ~2017
5023082906310046165812712 ~2015
5023595621910047191243912 ~2015
5023608782310047217564712 ~2015
5023867625910047735251912 ~2015
5024055772350240557723112 ~2016
5024424589770341944255912 ~2017
5024510894310049021788712 ~2015
5024739794310049479588712 ~2015
5024805731330148834387912 ~2016
5025605677110051211354312 ~2015
5025883424310051766848712 ~2015
Home
4.724.182 digits
e-mail
25-04-13