Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
36732022694373464045388712 ~2021
3673259679496979...91031114 2024
3673450209832718...55274314 2024
36736506157173473012314312 ~2021
36737489804373474979608712 ~2021
36743608717173487217434312 ~2021
36749147203173498294406312 ~2021
36750651613173501303226312 ~2021
36751064129973502128259912 ~2021
36751201019973502402039912 ~2021
3675373374113528...39145714 2024
36754702916373509405832712 ~2021
36759135109173518270218312 ~2021
36760477495173520954990312 ~2021
36763831169973527662339912 ~2021
3676708843511470...37404114 2024
36775031150373550062300712 ~2021
36778572623973557145247912 ~2021
36780875336373561750672712 ~2021
3678436145993825...91829714 2024
36790160171973580320343912 ~2021
36791036858373582073716712 ~2021
36795846989973591693979912 ~2021
36800372719173600745438312 ~2021
36801146023173602292046312 ~2021
Exponent Prime Factor Dig. Year
36804412283973608824567912 ~2021
36804748967973609497935912 ~2021
36807011491173614022982312 ~2021
36811862594373623725188712 ~2021
36813716731173627433462312 ~2021
36816402127173632804254312 ~2021
3681842390633313...51567114 2024
36819672689973639345379912 ~2021
36830259977973660519955912 ~2021
36830812679973661625359912 ~2021
36833451308373666902616712 ~2021
3684036943274199...15327914 2024
36843982136373687964272712 ~2021
36844527013173689054026312 ~2021
36847768757973695537515912 ~2021
36849216859173698433718312 ~2021
36849380942373698761884712 ~2021
36852369373173704738746312 ~2021
3685365518812874...04671914 2024
36855007556373710015112712 ~2021
36858957133173717914266312 ~2021
36860514728373721029456712 ~2021
36860671273173721342546312 ~2021
36864751466373729502932712 ~2021
36865314098373730628196712 ~2021
Exponent Prime Factor Dig. Year
36868274921973736549843912 ~2021
36868861205973737722411912 ~2021
36869567347173739134694312 ~2021
36870756109173741512218312 ~2021
36871024237173742048474312 ~2021
36876641720373753283440712 ~2021
36877013360373754026720712 ~2021
36883002332373766004664712 ~2021
36883121653173766243306312 ~2021
3688322260031364...62111115 2024
36885290335173770580670312 ~2021
36886752295173773504590312 ~2021
36886914032373773828064712 ~2021
36890209616373780419232712 ~2021
36890636672373781273344712 ~2021
36893893273173787786546312 ~2021
36894128095173788256190312 ~2021
36909809498373819618996712 ~2021
36911242409973822484819912 ~2021
36912208964373824417928712 ~2021
36912986981973825973963912 ~2021
36923312411973846624823912 ~2021
36925567825173851135650312 ~2021
36928953571173857907142312 ~2021
36930770123973861540247912 ~2021
Exponent Prime Factor Dig. Year
36931910413173863820826312 ~2021
36938608493973877216987912 ~2021
36943402310373886804620712 ~2021
36946351628373892703256712 ~2021
36957450266373914900532712 ~2021
36958545758373917091516712 ~2021
36963270649173926541298312 ~2021
36963574241973927148483912 ~2021
36966892753173933785506312 ~2021
36976680632373953361264712 ~2021
36986787307173973574614312 ~2021
36986792747973973585495912 ~2021
36991540076373983080152712 ~2021
36992648971173985297942312 ~2021
36995546744373991093488712 ~2021
37008957271174017914542312 ~2021
37020887503174041775006312 ~2021
37023811543174047623086312 ~2021
37024248241174048496482312 ~2021
37026150631174052301262312 ~2021
37026400736374052801472712 ~2021
37032336011974064672023912 ~2021
37032417727174064835454312 ~2021
37032589637974065179275912 ~2021
37032701083174065402166312 ~2021
Home
4.368.158 digits
e-mail
24-10-27