Home ResellersPanel.com - Free Reseller Hosting Program, Private Label, Turn Key, API e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
376893298197537865963911 ~2014
376916427837538328556711 ~2014
376921427517538428550311 ~2014
376927901112171...10393714 2023
376937744037538754880711 ~2014
376954924797539098495911 ~2014
376957692117539153842311 ~2014
376960903917539218078311 ~2014
376970256597539405131911 ~2014
376980048717539600974311 ~2014
376980566037539611320711 ~2014
377010293397540205867911 ~2014
377014926837540298536711 ~2014
377020573317540411466311 ~2014
3770308925322621853551912 ~2015
377043859917540877198311 ~2014
377072912997541458259911 ~2014
377087364237541747284711 ~2014
377096154237541923084711 ~2014
3771057088122626342528712 ~2015
377113047597542260951911 ~2014
377135630997542712619911 ~2014
377165076671357...76012114 2023
377223505797544470115911 ~2014
377243234637544864692711 ~2014
Exponent Prime Factor Dig. Year
377254857837545097156711 ~2014
3772596018760361536299312 ~2016
377275090317545501806311 ~2014
377294646117545892922311 ~2014
377314922517546298450311 ~2014
377327551437546551028711 ~2014
3773339307722640035846312 ~2015
377353795437547075908711 ~2014
3773628333722641770002312 ~2015
3774079865322644479191912 ~2015
3774188945322645133671912 ~2015
377423125797548462515911 ~2014
377429831397548596627911 ~2014
3774636522767943457408712 ~2016
3774746509722648479058312 ~2015
377485604637549712092711 ~2014
377486491317549729826311 ~2014
377488302117549766042311 ~2014
377494984917549899698311 ~2014
377499599637549991992711 ~2014
377503178517550063570311 ~2014
377534958597550699171911 ~2014
3775751923730206015389712 ~2015
377599231197551984623911 ~2014
377605643997552112879911 ~2014
Exponent Prime Factor Dig. Year
377624524197552490483911 ~2014
3776279616122657677696712 ~2015
3776431585130211452680912 ~2015
377643969597552879391911 ~2014
377671580637553431612711 ~2014
377686180917553723618311 ~2014
377686807317553736146311 ~2014
377711336397554226727911 ~2014
3777290884730218327077712 ~2015
377755733997555114679911 ~2014
377767273437555345468711 ~2014
3777700512737777005127112 ~2015
3777725003352888150046312 ~2016
3777778541322666671247912 ~2015
377779938117555598762311 ~2014
377782519917555650398311 ~2014
3778276699722669660198312 ~2015
3778474368122670846208712 ~2015
377855007837557100156711 ~2014
377870249397557404987911 ~2014
3779007247322674043483912 ~2015
3779292334730234338677712 ~2015
377953593837559071876711 ~2014
377955313917559106278311 ~2014
377995084197559901683911 ~2014
Exponent Prime Factor Dig. Year
377998041117559960822311 ~2014
377998557717559971154311 ~2014
378010365237560207304711 ~2014
378018365037560367300711 ~2014
378032905437560658108711 ~2014
3780993638930247949111312 ~2015
378115723917562314478311 ~2014
378117643797562352875911 ~2014
378121986597562439731911 ~2014
3781252450122687514700712 ~2015
378133789437562675788711 ~2014
3781422426760502758827312 ~2016
3781559380730252475045712 ~2015
3781652453930253219631312 ~2015
378189426717563788534311 ~2014
378198557637563971152711 ~2014
378236805717564736114311 ~2014
378254121717565082434311 ~2014
3782588911937825889119112 ~2015
378259017597565180351911 ~2014
3782868401352960157618312 ~2016
3783160901930265287215312 ~2015
378355698837567113976711 ~2014
3783814362737838143627112 ~2015
378395368797567907375911 ~2014
Home
4.768.925 digits
e-mail
25-05-04