Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
4068394362765094309803312 ~2016
4068560905132548487240912 ~2015
406898551798137971035911 ~2014
406898774638137975492711 ~2014
4069428178732555425429712 ~2015
406951535998139030719911 ~2014
406955209198139104183911 ~2014
406967362318139347246311 ~2014
406985075998139701519911 ~2014
407024847238140496944711 ~2014
407037599518140751990311 ~2014
4070401632124422409792712 ~2015
407043625198140872503911 ~2014
4071140839940711408399112 ~2016
4071149831324426898987912 ~2015
4071287449365140599188912 ~2016
407131926238142638524711 ~2014
407149162198142983243911 ~2014
407153074438143061488711 ~2014
407153501038143070020711 ~2014
4071587270932572698167312 ~2015
407162625118143252502311 ~2014
407189038318143780766311 ~2014
4071901727932575213823312 ~2015
4072295495932578363967312 ~2015
Exponent Prime Factor Dig. Year
4072434607132579476856912 ~2015
407259076198145181523911 ~2014
4072597212765161555403312 ~2016
4072612994932580903959312 ~2015
4072790323324436741939912 ~2015
407320473593918...55935914 2024
4073348035732586784285712 ~2015
4073537741324441226447912 ~2015
4073815369365181045908912 ~2016
407390257798147805155911 ~2014
407410434118148208682311 ~2014
4074108025757037512359912 ~2016
4074291901132594335208912 ~2015
4074350653724446103922312 ~2015
4074670690132597365520912 ~2015
4074824892165197198273712 ~2016
407513227011567...10804715 2025
407515423438150308468711 ~2014
407524638838150492776711 ~2014
4075414629724452487778312 ~2015
407542028518150840570311 ~2014
4075725935324454355611912 ~2015
407577083998151541679911 ~2014
407607696838152153936711 ~2014
407627971438152559428711 ~2014
Exponent Prime Factor Dig. Year
407628698398152573967911 ~2014
407699769838153995396711 ~2014
407700504238154010084711 ~2014
407720723038154414460711 ~2014
407778912238155578244711 ~2014
407828761572022...57387314 2023
407867929031566...47475314 2023
4078724208124472345248712 ~2015
4078815234765261043755312 ~2016
407918520118158370402311 ~2014
407932938838158658776711 ~2014
407966006518159320130311 ~2014
4080049861724480299170312 ~2015
4080102323357121432526312 ~2016
408050297038161005940711 ~2014
4080607359724483644158312 ~2015
4080674444957129442228712 ~2016
408070549198161410983911 ~2014
408078881518161577630311 ~2014
408096567598161931351911 ~2014
408104229238162084584711 ~2014
4081251198124487507188712 ~2015
408149633038162992660711 ~2014
4081542151132652337208912 ~2015
408154599838163091996711 ~2014
Exponent Prime Factor Dig. Year
4082292411140822924111112 ~2016
408234662518164693250311 ~2014
408255471598165109431911 ~2014
408262285198165245703911 ~2014
4082894089132663152712912 ~2015
408293600518165872010311 ~2014
408298578238165971564711 ~2014
4083060717724498364306312 ~2015
408314492518166289850311 ~2014
408355384798167107695911 ~2014
4083589499324501536995912 ~2015
4083719645357172075034312 ~2016
408373249438167464988711 ~2014
4083941843932671534751312 ~2015
408418455718168369114311 ~2014
4084491204124506947224712 ~2015
408450448438169008968711 ~2014
408481204798169624095911 ~2014
408502856998170057139911 ~2014
408504422398170088447911 ~2014
408527708518170554170311 ~2014
408538345198170766903911 ~2014
408546417838170928356711 ~2014
408552722038171054440711 ~2014
408553191118171063822311 ~2014
Home
4.724.182 digits
e-mail
25-04-13