Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
373277088117465541762311 ~2014
373282457637465649152711 ~2014
373337194917466743898311 ~2014
373341742437466834848711 ~2014
373342000317466840006311 ~2014
373350885237467017704711 ~2014
373361951637467239032711 ~2014
373374532917467490658311 ~2014
373375883997467517679911 ~2014
373378707117467574142311 ~2014
3733867781352274148938312 ~2016
373422355317468447106311 ~2014
3734280041352279920578312 ~2016
373433495517468669910311 ~2014
373447733517468954670311 ~2014
373449584997468991699911 ~2014
373464872397469297447911 ~2014
373470535317469410706311 ~2014
3735188665359763018644912 ~2016
373568160717471363214311 ~2014
373642012197472840243911 ~2014
3737013319722422079918312 ~2015
373702157637474043152711 ~2014
373745152197474903043911 ~2014
373757131917475142638311 ~2014
Exponent Prime Factor Dig. Year
373776394797475527895911 ~2014
373788617397475772347911 ~2014
373791007437475820148711 ~2014
3738067780129904542240912 ~2015
373852125237477042504711 ~2014
373857313197477146263911 ~2014
373944408597478888171911 ~2014
373953180311525...75664914 2023
374029011117480580222311 ~2014
374038951437480779028711 ~2014
374052777717481055554311 ~2014
3740827193322444963159912 ~2015
374106140637482122812711 ~2014
3741185281729929482253712 ~2015
374131652397482633047911 ~2014
374138742717482774854311 ~2014
374197726197483954523911 ~2014
374201400117484028002311 ~2014
374205116037484102320711 ~2014
3742210951129937687608912 ~2015
374231033637484620672711 ~2014
3742572795137425727951112 ~2015
3742652736737426527367112 ~2015
374282145117485642902311 ~2014
374292258717485845174311 ~2014
Exponent Prime Factor Dig. Year
3743005447129944043576912 ~2015
3743033809359888540948912 ~2016
374328963237486579264711 ~2014
3743475006122460850036712 ~2015
3743657885322461947311912 ~2015
3743686495322462118971912 ~2015
374376300717487526014311 ~2014
374410363317488207266311 ~2014
374443886517488877730311 ~2014
374448672837488973456711 ~2014
374468291637489365832711 ~2014
374483936637489678732711 ~2014
374498967237489979344711 ~2014
374539058037490781160711 ~2014
374603368437492067368711 ~2014
374608887717492177754311 ~2014
374653829637493076592711 ~2014
374669714397493394287911 ~2014
374680333917493606678311 ~2014
3747212544737472125447112 ~2015
3747288430337472884303112 ~2015
3747470782122484824692712 ~2015
374767979517495359590311 ~2014
374777562717495551254311 ~2014
3747912439322487474635912 ~2015
Exponent Prime Factor Dig. Year
374792667717495853354311 ~2014
3747926687322487560123912 ~2015
374807847237496156944711 ~2014
374831274717496625494311 ~2014
374833138917496662778311 ~2014
374848370091874...04500115 2024
374858471037497169420711 ~2014
374897825637497956512711 ~2014
374916339837498326796711 ~2014
374923666797498473335911 ~2014
374929134117498582682311 ~2014
374936285637498725712711 ~2014
3749517649729996141197712 ~2015
375023661237500473224711 ~2014
375057425637501148512711 ~2014
375081023637501620472711 ~2014
375085693917501713878311 ~2014
375092245797501844915911 ~2014
375094487997501889759911 ~2014
375095939637501918792711 ~2014
375100033931260...14004914 2023
375102186717502043734311 ~2014
375114897837502297956711 ~2014
375125547717502510954311 ~2014
375143210637502864212711 ~2014
Home
4.724.182 digits
e-mail
25-04-13