Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
267555607435351112148711 ~2012
2675715959316054295755912 ~2014
2675796271121406370168912 ~2014
267580222435351604448711 ~2012
267604029835352080596711 ~2012
267604711195352094223911 ~2012
2676250408116057502448712 ~2014
267628934635352578692711 ~2012
267631606435352632128711 ~2012
267657317995353146359911 ~2012
2676747160364241931847312 ~2015
2676765785921414126287312 ~2014
2676779904116060679424712 ~2014
267681762235353635244711 ~2012
2676975592326769755923112 ~2014
267722497435354449948711 ~2012
2677247113926772471139112 ~2014
267747514315354950286311 ~2012
2677475405316064852431912 ~2014
267763871395355277427911 ~2012
267766012315355320246311 ~2012
267766964035355339280711 ~2012
267776221915355524438311 ~2012
2677817043142845072689712 ~2015
267784805395355696107911 ~2012
Exponent Prime Factor Dig. Year
267795116515355902330311 ~2012
2678019319148204347743912 ~2015
267814696195356293923911 ~2012
267823841515356476830311 ~2012
2678447143316070682859912 ~2014
2678450293721427602349712 ~2014
267871249435357424988711 ~2012
2679120032921432960263312 ~2014
267931158835358623176711 ~2012
267950572915359011458311 ~2012
267966762235359335244711 ~2012
267970001995359400039911 ~2012
267971109715359422194311 ~2012
267981541435359630828711 ~2012
267987407395359748147911 ~2012
268002918835360058376711 ~2012
268004646835360092936711 ~2012
268009320835360186416711 ~2012
268011079812830...02793714 2024
268015955635360319112711 ~2012
268016162515360323250311 ~2012
268067894635361357892711 ~2012
268083377635361667552711 ~2012
268090159915361803198311 ~2012
268090505635361810112711 ~2012
Exponent Prime Factor Dig. Year
268100669995362013399911 ~2012
2681179861721449438893712 ~2014
2681359051316088154307912 ~2014
268178032315363560646311 ~2012
268182486835363649736711 ~2012
2681969140116091814840712 ~2014
2681978008121455824064912 ~2014
268233043315364660866311 ~2012
268233662035364673240711 ~2012
268241831635364836632711 ~2012
268249028995364980579911 ~2012
268259233435365184668711 ~2012
268280456635365609132711 ~2012
268283930995365678619911 ~2012
2682922019337560908270312 ~2015
268305121795366102435911 ~2012
268305943915366118878311 ~2012
268322690995366453819911 ~2012
268325133595366502671911 ~2012
268329616915366592338311 ~2012
2683303490921466427927312 ~2014
268353674515367073490311 ~2012
268362775435367255508711 ~2012
268365976915367319538311 ~2012
2683860283716103161702312 ~2014
Exponent Prime Factor Dig. Year
268386583315367731666311 ~2012
268387135195367742703911 ~2012
268404669595368093391911 ~2012
268413676915368273538311 ~2012
268426349395368526987911 ~2012
2684368399121474947192912 ~2014
2684526703737583373851912 ~2015
268453990195369079803911 ~2012
268476428035369528560711 ~2012
268532916235370658324711 ~2012
268546224235370924484711 ~2012
268554233515371084670311 ~2012
268557876835371157536711 ~2012
2685580981121484647848912 ~2014
2685588811364454131471312 ~2015
268576042435371520848711 ~2012
268578881035371577620711 ~2012
2685848789316115092735912 ~2014
268585123195371702463911 ~2012
268587954595371759091911 ~2012
268616321515372326430311 ~2012
268622726035372454520711 ~2012
268628258515372565170311 ~2012
268630330195372606603911 ~2012
268632597235372651944711 ~2012
Home
4.768.925 digits
e-mail
25-05-04