Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
86936351478693635147111 ~2010
86939883231738797664711 ~2009
86940447591738808951911 ~2009
86945505831738910116711 ~2009
86947861815216871708711 ~2010
86948485791738969715911 ~2009
86957004231739140084711 ~2009
869577233312174081266312 ~2011
869655418920871730053712 ~2011
86966422311739328446311 ~2009
86969776431739395528711 ~2009
869744440320873866567312 ~2011
86983504431739670088711 ~2009
86983890831739677816711 ~2009
869855907115657406327912 ~2011
86985602391739712047911 ~2009
86989359231739787184711 ~2009
86991749991739834999911 ~2009
86992739631739854792711 ~2009
86993191311739863826311 ~2009
87000115311740002306311 ~2009
870011941115660214939912 ~2011
87001276191740025523911 ~2009
87002112591740042251911 ~2009
87002385111740047702311 ~2009
Exponent Prime Factor Dig. Year
87004229031740084580711 ~2009
87004667631740093352711 ~2009
87005565831740111316711 ~2009
87008919111740178382311 ~2009
87009081711740181634311 ~2009
87012388911740247778311 ~2009
87012445431740248908711 ~2009
870188140313923010244912 ~2011
87025068591740501371911 ~2009
87028450431740569008711 ~2009
870295816920887099605712 ~2011
870323528320887764679312 ~2011
87032836911740656738311 ~2009
87037850096963028007311 ~2010
87040257831740805156711 ~2009
870430052322631181359912 ~2011
87045516231740910324711 ~2009
87046421516963713720911 ~2010
87049132191740982643911 ~2009
87053025831741060516711 ~2009
87053294391741065887911 ~2009
87053974038705397403111 ~2010
870569873915670257730312 ~2011
87057952575223477154311 ~2010
87059756516964780520911 ~2010
Exponent Prime Factor Dig. Year
87060277791741205555911 ~2009
87063242816965059424911 ~2010
87066580676965326453711 ~2010
87071973711741439474311 ~2009
87073144796965851583311 ~2010
87075063975224503838311 ~2010
87076817276966145381711 ~2010
87077681031741553620711 ~2009
87080249935224814995911 ~2010
870882064313934113028912 ~2011
87090650031741813000711 ~2009
87090736191741814723911 ~2009
87094951431741899028711 ~2009
87095937231741918744711 ~2009
870981375726129441271112 ~2012
87098826615225929596711 ~2010
87099891116967991288911 ~2010
87101368916968109512911 ~2010
87103256391742065127911 ~2009
87103355631742067112711 ~2009
87103925215226235512711 ~2010
871067257712194941607912 ~2011
87110577831742211556711 ~2009
87116832231742336644711 ~2009
87117589998711758999111 ~2010
Exponent Prime Factor Dig. Year
87118415775227104946311 ~2010
87121991031742439820711 ~2009
87122135511742442710311 ~2009
87128321511742566430311 ~2009
87143181111742863622311 ~2009
87145991991742919839911 ~2009
87148874598714887459111 ~2010
87149208711742984174311 ~2009
87153476031743069520711 ~2009
87155286231743105724711 ~2009
87157621191743152423911 ~2009
87159579831743191596711 ~2009
87162528711743250574311 ~2009
87165003798716500379111 ~2010
87167191311743343826311 ~2009
87171397191743427943911 ~2009
87175208631743504172711 ~2009
87175913838717591383111 ~2010
87176030391743520607911 ~2009
87176737191743534743911 ~2009
871846321122668004348712 ~2011
87189946431743798928711 ~2009
87194194796975535583311 ~2010
87194766591743895331911 ~2009
87198361791743967235911 ~2009
Home
5.187.277 digits
e-mail
25-11-17