Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
299118809515982376190311 ~2013
299125880635982517612711 ~2013
299137165315982743306311 ~2013
2991387758923931102071312 ~2014
299143952995982879059911 ~2013
299172777835983455556711 ~2013
299178000235983560004711 ~2013
2991842206329918422063112 ~2015
299186419795983728395911 ~2013
299207586835984151736711 ~2013
2992095004965826090107912 ~2015
299211897835984237956711 ~2013
299213796715984275934311 ~2013
299231983795984639675911 ~2013
2992492874941894900248712 ~2015
299262068395985241367911 ~2013
299270314795985406295911 ~2013
299282285035985645700711 ~2013
2993116032117958696192712 ~2014
299313612835986272256711 ~2013
2993166802117959000812712 ~2014
299328249835986564996711 ~2013
299359496515987189930311 ~2013
2993906975923951255807312 ~2014
2994095911717964575470312 ~2014
Exponent Prime Factor Dig. Year
299414805595988296111911 ~2013
2994329551929943295519112 ~2015
299441428435988828568711 ~2013
2994510613317967063679912 ~2014
299460852715989217054311 ~2013
299479992235989599844711 ~2013
2994803449123958427592912 ~2014
299499365635989987312711 ~2013
299510208715990204174311 ~2013
299512281715990245634311 ~2013
299513107435990262148711 ~2013
2995193701929951937019112 ~2015
299527268035990545360711 ~2013
299548815715990976314311 ~2013
299554030315991080606311 ~2013
2995557637929955576379112 ~2015
2996118940329961189403112 ~2015
2996235924747939774795312 ~2015
299631669835992633396711 ~2013
299637204595992744091911 ~2013
299637268795992745375911 ~2013
299644531435992890628711 ~2013
299644762195992895243911 ~2013
299660679595993213591911 ~2013
299668360132487...89079114 2023
Exponent Prime Factor Dig. Year
299670246235993404924711 ~2013
299672777515993455550311 ~2013
299687707195993754143911 ~2013
299703831715994076634311 ~2013
2997126091123977008728912 ~2014
299731802035994636040711 ~2013
299739738715994794774311 ~2013
2997489174753954805144712 ~2015
2997517674117985106044712 ~2014
299753240515995064810311 ~2013
299756125315995122506311 ~2013
299758502635995170052711 ~2013
299774782915995495658311 ~2013
2997957820117987746920712 ~2014
299815402795996308055911 ~2013
2998273561717989641370312 ~2014
2998407469123987259752912 ~2014
2998550308117991301848712 ~2014
2998699565317992197391912 ~2014
2998711627717992269766312 ~2014
2998738958971969735013712 ~2015
2998805834371971340023312 ~2015
299932225435998644508711 ~2013
299938797115998775942311 ~2013
299944105315998882106311 ~2013
Exponent Prime Factor Dig. Year
299949178315998983566311 ~2013
299951173315999023466311 ~2013
299975358115999507162311 ~2013
299988764995999775299911 ~2013
3000066607930000666079112 ~2015
300029648516000592970311 ~2013
300052163996001043279911 ~2013
300065170436001303408711 ~2013
3000956299124007650392912 ~2014
300110053316002201066311 ~2013
300114968036002299360711 ~2013
3001244906924009959255312 ~2014
300166426196003328523911 ~2013
300178386596003567731911 ~2013
300193170716003863414311 ~2013
300206848916004136978311 ~2013
300209503316004190066311 ~2013
300213432116004268642311 ~2013
300222072236004441444711 ~2013
300224767796004495355911 ~2013
300225103796004502075911 ~2013
300229897196004597943911 ~2013
3002422902118014537412712 ~2014
300258070436005161408711 ~2013
300258968396005179367911 ~2013
Home
4.724.182 digits
e-mail
25-04-13