Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
240744451794814889035911 ~2012
240744790434814895808711 ~2012
240753294834815065896711 ~2012
2407647163719261177309712 ~2014
240765430194815308603911 ~2012
2407674953314446049719912 ~2013
240775628634815512572711 ~2012
240784330914815686618311 ~2012
2407942132114447652792712 ~2013
2408022637719264181101712 ~2014
240840562194816811243911 ~2012
240856726314817134526311 ~2012
240871752234817435044711 ~2012
240873506034817470120711 ~2012
2408835511924088355119112 ~2014
240885172314817703446311 ~2012
240886307634817726152711 ~2012
240894744594817894891911 ~2012
240905138994818102779911 ~2012
2409153847733728153867912 ~2014
240915539034818310780711 ~2012
240917672634818353452711 ~2012
2409283147314455698883912 ~2013
2409357683919274861471312 ~2014
240936005394818720107911 ~2012
Exponent Prime Factor Dig. Year
2409486871119275894968912 ~2014
240950242314819004846311 ~2012
2409527555314457165331912 ~2013
240953292114819065842311 ~2012
240958979994819179599911 ~2012
240959075514819181510311 ~2012
240960472434819209448711 ~2012
240967383114819347662311 ~2012
240970662234819413244711 ~2012
240973795434819475908711 ~2012
240979433394819588667911 ~2012
240993630594819872611911 ~2012
241010780514820215610311 ~2012
241015116714820302334311 ~2012
241038852714820777054311 ~2012
241051843194821036863911 ~2012
241068235194821364703911 ~2012
241073227794821464555911 ~2012
2411007497919288059983312 ~2014
241103852034822077040711 ~2012
241104669594822093391911 ~2012
241109736714822194734311 ~2012
241118030994822360619911 ~2012
241131598314822631966311 ~2012
241131835194822636703911 ~2012
Exponent Prime Factor Dig. Year
2411384578114468307468712 ~2013
2411438405314468630431912 ~2013
2411562993138585007889712 ~2014
241159991634823199832711 ~2012
241165043394823300867911 ~2012
2411681611119293452888912 ~2014
241168702314823374046311 ~2012
241170284514823405690311 ~2012
241174363314823487266311 ~2012
241179476034823589520711 ~2012
241193501034823870020711 ~2012
2411966149314471796895912 ~2013
241198816794823976335911 ~2012
241229518434824590368711 ~2012
241231054314824621086311 ~2012
241232915514824658310311 ~2012
2412507412324125074123112 ~2014
241267063434825341268711 ~2012
241267146594825342931911 ~2012
241275830994825516619911 ~2012
241275970314825519406311 ~2012
2412791503733779081051912 ~2014
241280844714825616894311 ~2012
2412857735919302861887312 ~2014
241298457114825969142311 ~2012
Exponent Prime Factor Dig. Year
241317468834826349376711 ~2012
241330549314826610986311 ~2012
241338329514826766590311 ~2012
241344441234826888824711 ~2012
2413524955314481149731912 ~2013
241362592194827251843911 ~2012
241378662714827573254311 ~2012
241380363714827607274311 ~2012
241418415714828368314311 ~2012
2414336577714486019466312 ~2013
241452616914829052338311 ~2012
241455404394829108087911 ~2012
241461825834829236516711 ~2012
241465589634829311792711 ~2012
241473591114829471822311 ~2012
241497374394829947487911 ~2012
241501119714830022394311 ~2012
2415156851314490941107912 ~2013
241540991994830819839911 ~2012
241563421314831268426311 ~2012
241573630914831472618311 ~2012
2415759116362809737023912 ~2015
241579732434831594648711 ~2012
241587842034831756840711 ~2012
241592695314831853906311 ~2012
Home
4.768.925 digits
e-mail
25-05-04