Home Free Reseller Hosting Program, Anonymous 24x7 Clients Support, Fast 24x7 Reseller Support e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
223963479714479269594311 ~2012
223980559194479611183911 ~2012
224002078914480041578311 ~2012
224006059194480121183911 ~2012
224011024914480220498311 ~2012
2240199671313441198027912 ~2013
2240224542735843592683312 ~2014
224037195114480743902311 ~2012
224046491994480929839911 ~2012
2240538324113443229944712 ~2013
224063379114481267582311 ~2012
224069211234481384224711 ~2012
224070136914481402738311 ~2012
2240718240722407182407112 ~2014
224087317914481746358311 ~2012
224095953714481919074311 ~2012
224096456514481929130311 ~2012
224119756434482395128711 ~2012
224124588114482491762311 ~2012
224130894712030...06072714 2023
224134625034482692500711 ~2012
224135161794482703235911 ~2012
224147372034482947440711 ~2012
2241564039713449384238312 ~2013
2241692201313450153207912 ~2013
Exponent Prime Factor Dig. Year
224189330634483786612711 ~2012
224189832714483796654311 ~2012
2241950367122419503671112 ~2014
224197249914483944998311 ~2012
224211231114484224622311 ~2012
2242115599731389618395912 ~2014
2242156977713452941866312 ~2013
224221122834484422456711 ~2012
224228170314484563406311 ~2012
2242292137713453752826312 ~2013
224234543634484690872711 ~2012
224235172794484703455911 ~2012
2242374163117938993304912 ~2013
224251360314485027206311 ~2012
224257431834485148636711 ~2012
224291290434485825808711 ~2012
224301075234486021504711 ~2012
224307393714486147874311 ~2012
224333489394486669787911 ~2012
224334457314486689146311 ~2012
224341287714486825754311 ~2012
224361339714487226794311 ~2012
2243616455953846794941712 ~2014
2243711833922437118339112 ~2014
2243737075940387267366312 ~2014
Exponent Prime Factor Dig. Year
224404025634488080512711 ~2012
2244052690758345369958312 ~2015
224423450634488469012711 ~2012
224429747036696...51375314 2025
224444005914488880118311 ~2012
2244495001349378890028712 ~2014
2244586577313467519463912 ~2013
224459752914489195058311 ~2012
224461433994489228679911 ~2012
2244637433331424924066312 ~2014
2244712275122447122751112 ~2014
224482444434489648888711 ~2012
224490177714489803554311 ~2012
2245278219713471669318312 ~2013
224537192514490743850311 ~2012
2245491397313472948383912 ~2013
224556675834491133516711 ~2012
2245571835713473431014312 ~2013
2245590019313473540115912 ~2013
224573551914491471038311 ~2012
224574628314491492566311 ~2012
2245808539313474851235912 ~2013
224589580194491791603911 ~2012
224591373834491827476711 ~2012
2246012788717968102309712 ~2013
Exponent Prime Factor Dig. Year
224629401834492588036711 ~2012
2246315503117970524024912 ~2013
2246361657713478169946312 ~2013
2246408023713478448142312 ~2013
224644963434492899268711 ~2012
224648558634492971172711 ~2012
2246490666135943850657712 ~2014
224650723914493014478311 ~2012
224665240434493304808711 ~2012
224666918994493338379911 ~2012
224673233634493464672711 ~2012
224682525114493650502311 ~2012
224683277514493665550311 ~2012
2246903212322469032123112 ~2014
2246910537122469105371112 ~2014
224700591594494011831911 ~2012
224708704794494174095911 ~2012
224730016194494600323911 ~2012
224735674914494713498311 ~2012
224738799594494775991911 ~2012
224742788034494855760711 ~2012
224744959434494899188711 ~2012
224757008394495140167911 ~2012
224760579114495211582311 ~2012
224766324114495326482311 ~2012
Home
4.768.925 digits
e-mail
25-05-04