Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
2177393877713064363266312 ~2013
217765022634355300452711 ~2012
217776143994355522879911 ~2012
2177823427717422587421712 ~2013
217794901914355898038311 ~2012
217808075634356161512711 ~2012
217811744034356234880711 ~2012
217813738914356274778311 ~2012
217821546594356430931911 ~2012
217822326234356446524711 ~2012
217856118714357122374311 ~2012
217859038794357180775911 ~2012
2178599645917428797167312 ~2013
2178928677713073572066312 ~2013
217896124794357922495911 ~2012
217906934514358138690311 ~2012
217916093514358321870311 ~2012
217932573076642...27173714 2024
217941849834358836996711 ~2012
217943031834358860636711 ~2012
2179459565313076757391912 ~2013
217951063794359021275911 ~2012
217960222914359204458311 ~2012
217962923634359258472711 ~2012
217964866194359297323911 ~2012
Exponent Prime Factor Dig. Year
217970789034359415780711 ~2012
217975525194359510503911 ~2012
217978006794359560135911 ~2012
2179810190917438481527312 ~2013
2179812078113078872468712 ~2013
2179995625713079973754312 ~2013
218000183514360003670311 ~2012
218002278594360045571911 ~2012
218012810394360256207911 ~2012
218014767594360295351911 ~2012
218022654234360453084711 ~2012
2180276127121802761271112 ~2013
2180431710734886907371312 ~2014
2180456758321804567583112 ~2013
218045836794360916735911 ~2012
218058565914361171318311 ~2012
218068426794361368535911 ~2012
2180710270334891364324912 ~2014
218071410714361428214311 ~2012
218073342594361466851911 ~2012
218079535434361590708711 ~2012
218080721034361614420711 ~2012
218089544634361790892711 ~2012
218101408434362028168711 ~2012
218110488234362209764711 ~2012
Exponent Prime Factor Dig. Year
2181175354165435260623112 ~2015
218123820411196...87692715 2023
218126611194362532223911 ~2012
2181308860717450470885712 ~2013
218133369594362667391911 ~2012
218142996594362859931911 ~2012
218145018834362900376711 ~2012
218160514794363210295911 ~2012
218174150514363483010311 ~2012
218181851994363637039911 ~2012
2181836371313091018227912 ~2013
218212451394364249027911 ~2012
218212488594364249771911 ~2012
218216688114364333762311 ~2012
218232186714364643734311 ~2012
218241641394364832827911 ~2012
218242645434364852908711 ~2012
218263620594365272411911 ~2012
218268189714365363794311 ~2012
218268602394365372047911 ~2012
2182806301717462450413712 ~2013
2182821628334925146052912 ~2014
218290063194365801263911 ~2012
218303474994366069499911 ~2012
218304397314366087946311 ~2012
Exponent Prime Factor Dig. Year
218308817034366176340711 ~2012
218314288314366285766311 ~2012
218317248234366344964711 ~2012
218326456434366529128711 ~2012
218335808034366716160711 ~2012
2183373645139300725611912 ~2014
218338795314366775906311 ~2012
218339477994366789559911 ~2012
218342334234366846684711 ~2012
218345698194366913963911 ~2012
2183489204917467913639312 ~2013
218351702994367034059911 ~2012
218355047634367100952711 ~2012
218360413194367208263911 ~2012
218371009314367420186311 ~2012
2183726408917469811271312 ~2013
218378475234367569504711 ~2012
218380592634367611852711 ~2012
218388889794367777795911 ~2012
2184175992113105055952712 ~2013
218423196714368463934311 ~2012
218437569114368751382311 ~2012
218443041594368860831911 ~2012
218444877834368897556711 ~2012
2184457483313106744899912 ~2013
Home
4.768.925 digits
e-mail
25-05-04