Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
245944342794918886855911 ~2012
245947967034918959340711 ~2012
245948666514918973330311 ~2012
2459571379714757428278312 ~2013
245963589594919271791911 ~2012
245966467794919329355911 ~2012
245985816714919716334311 ~2012
2459986758114759920548712 ~2013
246016641594920332831911 ~2012
246032487114920649742311 ~2012
246034535514920690710311 ~2012
2460364667959048752029712 ~2015
246041646791781...60531915 2024
246065428434921308568711 ~2012
246083373114921667462311 ~2012
246085869114921717382311 ~2012
246104251071496...46505714 2024
246107078514922141570311 ~2012
246122346234922446924711 ~2012
246143715594922874311911 ~2012
246145002714922900054311 ~2012
246154901994923098039911 ~2012
246166244634923324892711 ~2012
246175739514923514790311 ~2012
2461905900724619059007112 ~2014
Exponent Prime Factor Dig. Year
2461948391919695587135312 ~2014
246214207794924284155911 ~2012
246225289194924505783911 ~2012
2462570976759101703440912 ~2015
2462585350324625853503112 ~2014
246262207194925244143911 ~2012
246267336714925346734311 ~2012
2462786165314776716991912 ~2013
2463030037734482420527912 ~2014
2463141052324631410523112 ~2014
2463181683714779090102312 ~2013
2463195631119705565048912 ~2014
2463221164954190865627912 ~2015
2463347704114780086224712 ~2013
246346134834926922696711 ~2012
2463483695314780902171912 ~2013
2463582316114781493896712 ~2013
2463597691924635976919112 ~2014
2464036173714784217042312 ~2013
2464878793119719030344912 ~2014
246502828794930056575911 ~2012
246505188594930103771911 ~2012
246521973714930439474311 ~2012
246530521914930610438311 ~2012
246541069314930821386311 ~2012
Exponent Prime Factor Dig. Year
246542186514930843730311 ~2012
246542655114930853102311 ~2012
246545314314930906286311 ~2012
246546443514930928870311 ~2012
246560959914931219198311 ~2012
246569867034931397340711 ~2012
246572824314931456486311 ~2012
246577731114931554622311 ~2012
246604369434932087388711 ~2012
246605355834932107116711 ~2012
246628221834932564436711 ~2012
246633308994932666179911 ~2012
246676826394933536527911 ~2012
246681074634933621492711 ~2012
2466870036114801220216712 ~2013
2467203372114803220232712 ~2013
246726509034934530180711 ~2012
246757579794935151595911 ~2012
246764773794935295475911 ~2012
2467694967714806169806312 ~2013
246784545114935690902311 ~2012
2467895760724678957607112 ~2014
2467920001719743360013712 ~2014
246801130914936022618311 ~2012
246804889794936097795911 ~2012
Exponent Prime Factor Dig. Year
246825224394936504487911 ~2012
246853383714937067674311 ~2012
2468658617374059758519112 ~2015
246883064634937661292711 ~2012
246888414915851...33367114 2024
2469018880114814113280712 ~2013
246907396794938147935911 ~2012
2469110371314814662227912 ~2013
2469154173714814925042312 ~2013
246915572514938311450311 ~2012
246927466914938549338311 ~2012
246935453514938709070311 ~2012
246963732834939274656711 ~2012
246979652634939593052711 ~2012
2469924358114819546148712 ~2013
2469995314119759962512912 ~2014
2470035886114820215316712 ~2013
247010407794940208155911 ~2012
247040323434940806468711 ~2012
247046836314940936726311 ~2012
247048735914940974718311 ~2012
247058613594941172271911 ~2012
247067973714941359474311 ~2012
247069535394941390707911 ~2012
2470729415314824376491912 ~2013
Home
4.724.182 digits
e-mail
25-04-13