Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
172719057713454381154311 ~2011
172723707233454474144711 ~2011
172734096833454681936711 ~2011
1727468464110364810784712 ~2012
172754081033455081620711 ~2011
172755807113455116142311 ~2011
172772229713455444594311 ~2011
172772648393455452967911 ~2011
172773134633455462692711 ~2011
172778940713455578814311 ~2011
172782736433455654728711 ~2011
1727833097324189663362312 ~2013
1727872374110367234244712 ~2012
1727923435113823387480912 ~2012
172813829692046...43529714 2023
172827064433456541288711 ~2011
172830109313456602186311 ~2011
172832996393456659927911 ~2011
172833700313456674006311 ~2011
172840210193456804203911 ~2011
172865686793457313735911 ~2011
172867483313457349666311 ~2011
172878610433457572208711 ~2011
172879710593457594211911 ~2011
172889039393457780787911 ~2011
Exponent Prime Factor Dig. Year
172889875193457797503911 ~2011
1728907213310373443279912 ~2012
172896154433457923088711 ~2011
172896155993457923119911 ~2011
172907202593458144051911 ~2011
172911680393458233607911 ~2011
172914928433458298568711 ~2011
172917342833458346856711 ~2011
172921389713458427794311 ~2011
172932472433458649448711 ~2011
172942953833458859076711 ~2011
172947340433458946808711 ~2011
1729494471727671911547312 ~2013
172949705513458994110311 ~2011
172952239313459044786311 ~2011
172970934593459418691911 ~2011
1729729732113837837856912 ~2012
1729736530110378419180712 ~2012
1729763580110378581480712 ~2012
1729945435310379672611912 ~2012
173009692913460193858311 ~2011
173009864633460197292711 ~2011
173012801513460256030311 ~2011
173024514233460490284711 ~2011
173024592113460491842311 ~2011
Exponent Prime Factor Dig. Year
173029048313460580966311 ~2011
173032019633460640392711 ~2011
1730333491310382000947912 ~2012
173043724193460874483911 ~2011
173064139913461282798311 ~2011
1730666398713845331189712 ~2012
173068913633461378272711 ~2011
173074456433461489128711 ~2011
1730766193310384597159912 ~2012
173091322313461826446311 ~2011
173100956393462019127911 ~2011
173102062793462041255911 ~2011
173124523793462490475911 ~2011
173128450193462569003911 ~2011
1731370940913850967527312 ~2012
173153068913463061378311 ~2011
1731545170113852361360912 ~2012
173156571713463131434311 ~2011
173160827393463216547911 ~2011
173165724113463314482311 ~2011
173174223713463484474311 ~2011
173178249833463564996711 ~2011
1731977706127711643297712 ~2013
1732005413913856043311312 ~2012
173200913393464018267911 ~2011
Exponent Prime Factor Dig. Year
1732037821310392226927912 ~2012
1732063564317320635643112 ~2013
173212543433464250868711 ~2011
173212906313464258126311 ~2011
173218549433464370988711 ~2011
1732319835710393919014312 ~2012
1732471696110394830176712 ~2012
173251684913465033698311 ~2011
173266272113465325442311 ~2011
173268459233465369184711 ~2011
173272040033465440800711 ~2011
173279883113465597662311 ~2011
173280396113465607922311 ~2011
173282545913465650918311 ~2011
173285714393465714287911 ~2011
173287416232443...68843114 2024
173289321233465786424711 ~2011
173291917793465838355911 ~2011
173297190593465943811911 ~2011
173300083793466001675911 ~2011
173313146033466262920711 ~2011
173313750593466275011911 ~2011
1733154306717331543067112 ~2013
1733178576110399071456712 ~2012
173319264593466385291911 ~2011
Home
4.768.925 digits
e-mail
25-05-04