Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
168900114833378002296711 ~2011
168907811513378156230311 ~2011
168915578033378311560711 ~2011
168925393433378507868711 ~2011
1689312983913514503871312 ~2012
168942824033378856480711 ~2011
1689480365940547528781712 ~2014
168960335033379206700711 ~2011
1689633163113517065304912 ~2012
168965014913379300298311 ~2011
168967437113379348742311 ~2011
168976431113379528622311 ~2011
168982555793379651115911 ~2011
1689893992110139363952712 ~2012
1690044863310140269179912 ~2012
1690063870110140383220712 ~2012
169010515433380210308711 ~2011
1690123371710140740230312 ~2012
169018302593380366051911 ~2011
169034103233380682064711 ~2011
169034619833380692396711 ~2011
169036161833380723236711 ~2011
169038977993380779559911 ~2011
1690427112727046833803312 ~2013
169043705513380874110311 ~2011
Exponent Prime Factor Dig. Year
1690458838113523670704912 ~2012
1690880008110145280048712 ~2012
169092075593381841511911 ~2011
169111651193382233023911 ~2011
169125310193382506203911 ~2011
1691361997113530895976912 ~2012
1691469268110148815608712 ~2012
169149057233382981144711 ~2011
169170007913383400158311 ~2011
169180812593383616251911 ~2011
169192924433383858488711 ~2011
169195439993383908799911 ~2011
169202210393384044207911 ~2011
1692057781113536462248912 ~2012
169208734193384174683911 ~2011
1692153828110152922968712 ~2012
1692230548713537844389712 ~2012
169224478131269...85975114 2023
169236186233384723724711 ~2011
169236442913384728858311 ~2011
1692393862110154363172712 ~2012
1692406318713539250549712 ~2012
169240906433384818128711 ~2011
1692433766913539470135312 ~2012
169258298393385165967911 ~2011
Exponent Prime Factor Dig. Year
169262432633385248652711 ~2011
169267017833385340356711 ~2011
1692675408740624209808912 ~2014
1692736102150782083063112 ~2014
169275390593385507811911 ~2011
169286693993385733879911 ~2011
169292362793385847255911 ~2011
1692970141930473462554312 ~2013
1693068273130475228915912 ~2013
1693068359913544546879312 ~2012
169307691713386153834311 ~2011
169308713513386174270311 ~2011
169308900593386178011911 ~2011
1693212769713545702157712 ~2012
169321360433386427208711 ~2011
169334648513386692970311 ~2011
1693561188716935611887112 ~2013
169358922713387178454311 ~2011
169359284033387185680711 ~2011
169375430993387508619911 ~2011
1693787503710162725022312 ~2012
169386553793387731075911 ~2011
169406129633388122592711 ~2011
1694085758913552686071312 ~2012
169409841713388196834311 ~2011
Exponent Prime Factor Dig. Year
169421020433388420408711 ~2011
1694463928730500350716712 ~2013
1694603212110167619272712 ~2012
169464709793389294195911 ~2011
169467379193389347583911 ~2011
169476037793389520755911 ~2011
169480861433389617228711 ~2011
1694856745310169140471912 ~2012
169491862913389837258311 ~2011
1695054998913560439991312 ~2012
1695140733710170844402312 ~2012
1695151173710170907042312 ~2012
169529286593390585731911 ~2011
169532324513390646490311 ~2011
169543569113390871382311 ~2011
169558266593391165331911 ~2011
169562566433391251328711 ~2011
169568041313391360826311 ~2011
169575546113391510922311 ~2011
1695838196913566705575312 ~2012
169596840233391936804711 ~2011
169607111513392142230311 ~2011
169610918633392218372711 ~2011
169630180313392603606311 ~2011
169631383917684...91123114 2023
Home
4.768.925 digits
e-mail
25-05-04