Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
57843458391156869167911 ~2007
578465030369415803636112 ~2012
57848331111156966622311 ~2007
57848504394627880351311 ~2009
57848942391156978847911 ~2007
57850293619256046977711 ~2009
578520573110413370315912 ~2010
57852564315785256431111 ~2009
57854385831157087716711 ~2007
57854551911157091038311 ~2007
57855352191157107043911 ~2007
57855972831157119456711 ~2007
57857188333471431299911 ~2008
57861072533471664351911 ~2008
57861463974628917117711 ~2009
57862127031157242540711 ~2007
57863454591157269091911 ~2007
57865019511157300390311 ~2007
57865370511157307410311 ~2007
57866689911157333798311 ~2007
57869123631157382472711 ~2007
57869825991157396519911 ~2007
57872384235787238423111 ~2009
57872476191157449523911 ~2007
57873270894629861671311 ~2009
Exponent Prime Factor Dig. Year
57874550991157491019911 ~2007
57874930911157498618311 ~2007
57874975333472498519911 ~2008
57875161914630012952911 ~2009
57876039079260166251311 ~2009
57877322391157546447911 ~2007
57879634311157592686311 ~2007
57880194591157603891911 ~2007
57880629711157612594311 ~2007
57884965133473097907911 ~2008
57885171231157703424711 ~2007
578855809156727869291912 ~2011
57886576613473194596711 ~2008
57886782231157735644711 ~2007
57886947613473216856711 ~2008
57890270391157805407911 ~2007
57890499613473429976711 ~2008
57891178133473470687911 ~2008
578966982710421405688712 ~2010
57897294894631783591311 ~2009
57898111791157962235911 ~2007
57898622514631889800911 ~2009
57898734373473924062311 ~2008
57899615031157992300711 ~2007
57901435311158028706311 ~2007
Exponent Prime Factor Dig. Year
57903435231158068704711 ~2007
57904730631158094612711 ~2007
57907674831158153496711 ~2007
57908164311158163286311 ~2007
57908382831158167656711 ~2007
57910426194632834095311 ~2009
57910585791158211715911 ~2007
579106187332429946488912 ~2011
57911126938107557770311 ~2009
57911189391158223787911 ~2007
57916390191158327803911 ~2007
57916557133474993427911 ~2008
57918316911158366338311 ~2007
57919759191158395183911 ~2007
579212640710425827532712 ~2010
57923786991158475739911 ~2007
57926097591158521951911 ~2007
57928022214634241776911 ~2009
57928422711158568454311 ~2007
57929925711158598514311 ~2007
57930180831158603616711 ~2007
57931497831158629956711 ~2007
57932165514634573240911 ~2009
57936337431158726748711 ~2007
57936673311158733466311 ~2007
Exponent Prime Factor Dig. Year
57938102511158762050311 ~2007
57942387591158847751911 ~2007
57944545311158890906311 ~2007
57944955298112293740711 ~2009
57945560213476733612711 ~2008
579526461110431476299912 ~2010
57953774933477226495911 ~2008
57953885031159077700711 ~2007
57954569391159091387911 ~2007
57955341173477320470311 ~2008
57955728831159114576711 ~2007
57956037111159120742311 ~2007
57959306031159186120711 ~2007
57961956231159239124711 ~2007
57967302231159346044711 ~2007
57969627013478177620711 ~2008
57973262991159465259911 ~2007
57975192231159503844711 ~2007
57977729511159554590311 ~2007
57977741874638219349711 ~2009
57978273114638261848911 ~2009
579783825110436108851912 ~2010
57983044933478982695911 ~2008
57983479311159669586311 ~2007
57983912394638712991311 ~2009
Home
5.187.277 digits
e-mail
25-11-17