Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4466662223893332444710 ~2006
446680072910720321749712 ~2009
4466905199893381039910 ~2006
4466937983893387596710 ~2006
4466976131893395226310 ~2006
4467046691893409338310 ~2006
44670740412680244424711 ~2008
4467160979893432195910 ~2006
4467333863893466772710 ~2006
44674291817147886689711 ~2009
4467477779893495555910 ~2006
44675809136254613278311 ~2008
4467700823893540164710 ~2006
4467825671893565134310 ~2006
44679406994467940699111 ~2008
4468018343893603668710 ~2006
4468272923893654584710 ~2006
4468448423893689684710 ~2006
4468559159893711831910 ~2006
4469201543893840308710 ~2006
4469339243893867848710 ~2006
4469403143893880628710 ~2006
4469419319893883863910 ~2006
4469465723893893144710 ~2006
4469492243893898448710 ~2006
Exponent Prime Factor Digits Year
44695889993575671199311 ~2008
4469626559893925311910 ~2006
4469642423893928484710 ~2006
4469776439893955287910 ~2006
4469836271893967254310 ~2006
4470087551894017510310 ~2006
4470215111894043022310 ~2006
44703424514470342451111 ~2008
4470347411894069482310 ~2006
44705078899835117355911 ~2009
4470700763894140152710 ~2006
4471402931894280586310 ~2006
4471481471894296294310 ~2006
44715661932682939715911 ~2008
44716398198048951674311 ~2009
44716571993577325759311 ~2008
4471980083894396016710 ~2006
4472056079894411215910 ~2006
4472192531894438506310 ~2006
4472376071894475214310 ~2006
4472696831894539366310 ~2006
4472721791894544358310 ~2006
44728570613578285648911 ~2008
4472882819894576563910 ~2006
44729729932683783795911 ~2008
Exponent Prime Factor Digits Year
4472985683894597136710 ~2006
447309752913419292587112 ~2009
44733631132684017867911 ~2008
4473456623894691324710 ~2006
4473682859894736571910 ~2006
4473686183894737236710 ~2006
44739157514473915751111 ~2008
4474326119894865223910 ~2006
4474403579894880715910 ~2006
4474497011894899402310 ~2006
44745925193579674015311 ~2008
44746381932684782915911 ~2008
4474748051894949610310 ~2006
4474962311894992462310 ~2006
4474993559894998711910 ~2006
4475133959895026791910 ~2006
44753094713580247576911 ~2008
44753597398055647530311 ~2009
44754566172685273970311 ~2008
44755085932685305155911 ~2008
4475523191895104638310 ~2006
4475597051895119410310 ~2006
44756008812685360528711 ~2008
44756605318056188955911 ~2009
4475723783895144756710 ~2006
Exponent Prime Factor Digits Year
4476232811895246562310 ~2006
447634464117905378564112 ~2010
4476450323895290064710 ~2006
4476581783895316356710 ~2006
44767019172686021150311 ~2008
4476747251895349450310 ~2006
4476782003895356400710 ~2006
447694367314326219753712 ~2009
4477096223895419244710 ~2006
4477198619895439723910 ~2006
44773834612686430076711 ~2008
4477443923895488784710 ~2006
4477445699895489139910 ~2006
4477536023895507204710 ~2006
4477949639895589927910 ~2006
4478089463895617892710 ~2006
4478313743895662748710 ~2006
44785185437165629668911 ~2009
4478567651895713530310 ~2006
4478612291895722458310 ~2006
4478627063895725412710 ~2006
4478641463895728292710 ~2006
447891817710749403624912 ~2009
4479066359895813271910 ~2006
4479145343895829068710 ~2006
Home
5.307.017 digits
e-mail
26-01-11