Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
170494638593409892771911 ~2011
170498987511053...42811914 2023
170501640113410032802311 ~2011
170511235433410224708711 ~2011
170528133113410562662311 ~2011
170530266713410605334311 ~2011
170533408313410668166311 ~2011
170537682113410753642311 ~2011
1705470957117054709571112 ~2013
170564727113411294542311 ~2011
170569581833411391636711 ~2011
170571765833411435316711 ~2011
1705813348713646506789712 ~2012
170590330313411806606311 ~2011
1705937103117059371031112 ~2013
170594273033411885460711 ~2011
170594783633411895672711 ~2011
1706096893710236581362312 ~2012
170610719033412214380711 ~2011
170618832593412376651911 ~2011
170619248513412384970311 ~2011
170626223033412524460711 ~2011
170627171513412543430311 ~2011
170638011593412760231911 ~2011
170638635713412772714311 ~2011
Exponent Prime Factor Dig. Year
170642239193412844783911 ~2011
1706447177310238683063912 ~2012
170645882633412917652711 ~2011
1706534489913652275919312 ~2012
1706574832110239448992712 ~2012
170658203633413164072711 ~2011
170665705193413314103911 ~2011
170678243633413564872711 ~2011
1706870420913654963367312 ~2012
170688688913413773778311 ~2011
170697469433413949388711 ~2011
170697776033413955520711 ~2011
170702458913414049178311 ~2011
1707112273740970694568912 ~2014
170716874393414337487911 ~2011
170717386793414347735911 ~2011
170719216313414384326311 ~2011
1707299195913658393567312 ~2012
170731214633414624292711 ~2011
170748582113414971642311 ~2011
170750456393415009127911 ~2011
170757464633415149292711 ~2011
170763018713415260374311 ~2011
170764608113415292162311 ~2011
1707706489710246238938312 ~2012
Exponent Prime Factor Dig. Year
1707840325710247041954312 ~2012
170785003913415700078311 ~2011
170788022633415760452711 ~2011
170790422033415808440711 ~2011
170790608993415812179911 ~2011
1707933415723911067819912 ~2013
170795550713415911014311 ~2011
1708062881310248377287912 ~2012
1708064160110248384960712 ~2012
170811492233416229844711 ~2011
170821772393416435447911 ~2011
1708244529751247335891112 ~2014
170836131593416722631911 ~2011
170844424433416888488711 ~2011
170844879233416897584711 ~2011
1708512777117085127771112 ~2013
1708569613710251417682312 ~2012
170867151833417343036711 ~2011
170870006993417400139911 ~2011
1708820011713670560093712 ~2012
170905757393418115147911 ~2011
170907081713418141634311 ~2011
1709126602110254759612712 ~2012
1709193736713673549893712 ~2012
170919654833418393096711 ~2011
Exponent Prime Factor Dig. Year
170920050833418401016711 ~2011
170923011233418460224711 ~2011
1709260630113674085040912 ~2012
1709366150913674929207312 ~2012
170943964433418879288711 ~2011
1709444533710256667202312 ~2012
170962513913419250278311 ~2011
1709753114954712099676912 ~2014
170978967713419579354311 ~2011
170982275633419645512711 ~2011
170986273913419725478311 ~2011
170992096433419841928711 ~2011
1709971811310259830867912 ~2012
1709972006923939608096712 ~2013
1710087113310260522679912 ~2012
171014008313420280166311 ~2011
1710155551713681244413712 ~2012
1710308479917103084799112 ~2013
1710325434110261952604712 ~2012
1710387321127366197137712 ~2013
171042104271836...99859914 2024
171045186593420903731911 ~2011
171045361913420907238311 ~2011
171045813113420916262311 ~2011
171048732113420974642311 ~2011
Home
4.724.182 digits
e-mail
25-04-13