Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
135220406392704408127911 ~2010
1352208220710817665765712 ~2012
1352212945110817703560912 ~2012
135233592112704671842311 ~2010
135234752632704695052711 ~2010
135234978112704699562311 ~2010
135240668178114440090311 ~2011
135248274232704965484711 ~2010
1352531008321640496132912 ~2012
135260368192705207363911 ~2010
135266893912705337878311 ~2010
1352678827710821430621712 ~2012
135270620992705412419911 ~2010
135274019032705480380711 ~2010
135276498232705529964711 ~2010
1352888482764938647169712 ~2014
135289852432705797048711 ~2010
1352979144713529791447112 ~2012
135299735538117984131911 ~2011
1353030493718942426911912 ~2012
1353031270940590938127112 ~2013
135309187432706183748711 ~2010
135315439792706308795911 ~2010
1353247516110825980128912 ~2012
135330823312706616466311 ~2010
Exponent Prime Factor Dig. Year
135335757712706715154311 ~2010
135341845912706836918311 ~2010
135343270432706865408711 ~2010
135356408512707128170311 ~2010
1353638443110829107544912 ~2012
135366424618121985476711 ~2011
135368874538122132471911 ~2011
135375450232707509004711 ~2010
1353904745375818665736912 ~2014
1354030945110832247560912 ~2012
1354106899124373924183912 ~2012
1354170793946041806992712 ~2013
135418633192708372663911 ~2010
135420321112708406422311 ~2010
135421633192708432663911 ~2010
135423785392708475707911 ~2010
135424703392708494067911 ~2010
135425063032708501260711 ~2010
135440606392708812127911 ~2010
1354410094354176403772112 ~2013
135445492978126729578311 ~2011
135445552018126733120711 ~2011
1354455661710835645293712 ~2012
1354495687932507896509712 ~2013
135455230818127313848711 ~2011
Exponent Prime Factor Dig. Year
135457591312709151826311 ~2010
135460779832709215596711 ~2010
1354721060910837768487312 ~2012
135474546712709490934311 ~2010
135476087512709521750311 ~2010
1354831495913548314959112 ~2012
135493951432709879028711 ~2010
135497626432709952528711 ~2010
135506000512710120010311 ~2010
1355107196918971500756712 ~2012
135513991578130839494311 ~2011
1355162905710841303245712 ~2012
135521502112710430042311 ~2010
135526447792710528955911 ~2010
135530003392710600067911 ~2010
135534978832710699576711 ~2010
135535537192710710743911 ~2010
135536485192710729703911 ~2010
135536569432710731388711 ~2010
135539595618132375736711 ~2011
135540755392710815107911 ~2010
135542383192710847663911 ~2010
135546699232710933984711 ~2010
1355469894713554698947112 ~2012
135547707592710954151911 ~2010
Exponent Prime Factor Dig. Year
135554974912711099498311 ~2010
135577963312711559266311 ~2010
1355780995321692495924912 ~2012
1355789209710846313677712 ~2012
135592227832711844556711 ~2010
135592674112711853482311 ~2010
135605059192712101183911 ~2010
135605258992712105179911 ~2010
135611246392712224927911 ~2010
135614829712712296594311 ~2010
135619023832712380476711 ~2010
135620861578137251694311 ~2011
1356222164932549331957712 ~2013
135631159018137869540711 ~2011
1356378258746116860795912 ~2013
135650549392713010987911 ~2010
135660624592713212491911 ~2010
135667897938140073875911 ~2011
1356717531113567175311112 ~2012
1356837586110854700688912 ~2012
135685476832713709536711 ~2010
1356958888929853095555912 ~2013
135696030232713920604711 ~2010
135700120912714002418311 ~2010
135705208912714104178311 ~2010
Home
4.768.925 digits
e-mail
25-05-04