Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3992542283798508456710 ~2006
3992553959798510791910 ~2006
39926873812395612428711 ~2007
39927801532395668091911 ~2007
3992892803798578560710 ~2006
3992945903798589180710 ~2006
3993009539798601907910 ~2006
3993116591798623318310 ~2006
39933163913194653112911 ~2007
39934383532396063011911 ~2007
39934662293194772983311 ~2007
3994048631798809726310 ~2006
3994385159798877031910 ~2006
399454461154325806709712 ~2010
39945839532396750371911 ~2007
3994642703798928540710 ~2006
3994739219798947843910 ~2006
3994848191798969638310 ~2006
3994869383798973876710 ~2006
3994897271798979454310 ~2006
3995047151799009430310 ~2006
3995158463799031692710 ~2006
3995276231799055246310 ~2006
3995286923799057384710 ~2006
3995354003799070800710 ~2006
Exponent Prime Factor Digits Year
3995389571799077914310 ~2006
3995490923799098184710 ~2006
39955376572397322594311 ~2007
3995697383799139476710 ~2006
3995728631799145726310 ~2006
3995763539799152707910 ~2006
39958307473995830747111 ~2008
3995887751799177550310 ~2006
3996035063799207012710 ~2006
3996039119799207823910 ~2006
3996519743799303948710 ~2006
3996526763799305352710 ~2006
3996782351799356470310 ~2006
3996872063799374412710 ~2006
39968863932398131835911 ~2007
39969250073197540005711 ~2007
3997057523799411504710 ~2006
399735574911992067247112 ~2009
3997453979799490795910 ~2006
3998227151799645430310 ~2006
3998456543799691308710 ~2006
3998486039799697207910 ~2006
3998893319799778663910 ~2006
3998896283799779256710 ~2006
39989140132399348407911 ~2007
Exponent Prime Factor Digits Year
39989276572399356594311 ~2007
39989360573199148845711 ~2007
3999060119799812023910 ~2006
39990690132399441407911 ~2007
3999081539799816307910 ~2006
3999377351799875470310 ~2006
3999418151799883630310 ~2006
3999425879799885175910 ~2006
3999443771799888754310 ~2006
3999470543799894108710 ~2006
39997008677199461560711 ~2008
39997293618799404594311 ~2009
3999749639799949927910 ~2006
3999787703799957540710 ~2006
3999988631799997726310 ~2006
40000666493200053319311 ~2007
4000179983800035996710 ~2006
40002969773200237581711 ~2007
40007237572400434254311 ~2007
400082056345609354418312 ~2010
4000992731800198546310 ~2006
4001188643800237728710 ~2006
4001203403800240680710 ~2006
4001229359800245871910 ~2006
4001230223800246044710 ~2006
Exponent Prime Factor Digits Year
4001239283800247856710 ~2006
40012583332400754999911 ~2007
40012823393201025871311 ~2007
4001374271800274854310 ~2006
4001382383800276476710 ~2006
4001419451800283890310 ~2006
4001452391800290478310 ~2006
4001611343800322268710 ~2006
40017414379604179448911 ~2009
4001767019800353403910 ~2006
40020134932401208095911 ~2007
4002039791800407958310 ~2006
4002186431800437286310 ~2006
4002323459800464691910 ~2006
4002372323800474464710 ~2006
40025105397204518970311 ~2008
4002549599800509919910 ~2006
40025812514002581251111 ~2008
400304866326420121175912 ~2010
40030794773202463581711 ~2007
40032387138807125168711 ~2009
4003272011800654402310 ~2006
4003607519800721503910 ~2006
40036077372402164642311 ~2007
400364250713612384523912 ~2009
Home
5.247.179 digits
e-mail
25-12-14